$y =xy'+\sqrt{(y')^2+1}$
Since we already know that $\psi(y)=\sqrt{(y')^2+1}, and \ \psi(y) = y'$
Plug $p = y'$,
we get $y = xp+\sqrt{p^2+1}$
So $\psi(p) = p,\psi'(p) = 1$
And $\psi(p) = \sqrt{p^2+1},\psi'(p) = \frac{p}{\sqrt{p^2+1}}$
Differentiate the equation w.r.t. $x$,
$pdx=pdx+(x\psi'(p)+\psi'(p))dp$
$0=(x+\frac{p}{\sqrt{p^2+1}})dp$
$dp = 0$
$\int1 dp=p=C$
Thus, $y = cx+\sqrt{c^2+1}$, is the general solution.
To get the singular solution in the parametric form,
we know that $x = -\psi'(p) = -\frac{p}{\sqrt{p^2+1}}$, hence, $\sqrt{p^2+1} =-\frac{p}{x}$,
since $y = xp+\psi(p)=xp+\sqrt{p^2+1}$, we can derive that $y = \frac{1}{\sqrt{p^2+1}} = -\frac{x}{p}$
Therefore, the singular solution in the parametric form s:
$\begin{cases}
x = - \frac{p}{\sqrt{p^2+1}} \\
y = \frac{1}{\sqrt{p^2+1}}
\end{cases}$
Since $x = -\frac{p}{\sqrt{p^2+1}}$, we can derive that $p =\pm\frac{x}{\sqrt{1-x^2}}$,
Sub into $y = -\frac{x}{p}$, we can get that:
$y = \pm\sqrt{1-x^2}$