1
Term Test 2 / Re: TT2A Problem 5
« on: November 24, 2018, 08:35:43 AM »
$f(z)=\frac{2}{z-2}+\frac{1}{z+1}$
(a) |z|<1
$f(z)= \frac{1}{\frac{z}{2}-1}$+$\frac{1}{z+1}$
$= \sum_{n=0}^{\infty}-(\frac{z}{2})^n+(-z)^n$
$= \sum_{n=0}^{\infty}\frac{-z^n}{2^n}+(-1)^nz^n$
$= \sum_{n=0}^{\infty} (\frac{-1}{2^n}+(-1)^n)z^n$
(b) 1<|z|<2
$f(z)= \frac{1}{\frac{z}{2}-1}$+$\frac{1}{z}\frac{1}{1+\frac{1}{z}}$
$= \sum_{n=0}^{\infty} -(\frac{z}{2})^n+\sum_{n=0}^{\infty}\frac{1}{z}(\frac{-1}{z})^n$
$= \sum_{n=0}^{\infty}\frac{-z^n}{2^n}+\sum_{n=0}^{\infty}\frac{(-1)^n}{z^{n+1}}$
$= \sum_{n=0}^{\infty}\frac{-z^n}{2^n}+\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{z^{n}}$
$= \sum_{n=0}^{\infty}\frac{-1}{2^n}z^n+\sum_{n=-\infty}^{1}(-1)^{-n-1}z^{n}$
(c)|z|>2
$f(z)= \frac{2}{z}\frac{1}{1-\frac{2}{z}}$+$\frac{1}{z}\frac{1}{1+\frac{1}{z}}$
$=\sum_{n=0}^{\infty}\frac{2}{z}(\frac{2}{z})^n+\frac{1}{z}(\frac{-1}{z})^n$
$=\sum_{n=0}^{\infty}\frac{2^{n+1}}{z^{n+1}}+\frac{(-1)^n}{z^{n+1}}$
$=\sum_{n=-\infty}^{0}(2^{n+1}+(-1)^n)z^{n-1}$
$=\sum_{n=-\infty}^{1}(2^{n+2}+(-1)^{n+1})z^{n}$
(a) |z|<1
$f(z)= \frac{1}{\frac{z}{2}-1}$+$\frac{1}{z+1}$
$= \sum_{n=0}^{\infty}-(\frac{z}{2})^n+(-z)^n$
$= \sum_{n=0}^{\infty}\frac{-z^n}{2^n}+(-1)^nz^n$
$= \sum_{n=0}^{\infty} (\frac{-1}{2^n}+(-1)^n)z^n$
(b) 1<|z|<2
$f(z)= \frac{1}{\frac{z}{2}-1}$+$\frac{1}{z}\frac{1}{1+\frac{1}{z}}$
$= \sum_{n=0}^{\infty} -(\frac{z}{2})^n+\sum_{n=0}^{\infty}\frac{1}{z}(\frac{-1}{z})^n$
$= \sum_{n=0}^{\infty}\frac{-z^n}{2^n}+\sum_{n=0}^{\infty}\frac{(-1)^n}{z^{n+1}}$
$= \sum_{n=0}^{\infty}\frac{-z^n}{2^n}+\sum_{n=1}^{\infty}\frac{(-1)^{n-1}}{z^{n}}$
$= \sum_{n=0}^{\infty}\frac{-1}{2^n}z^n+\sum_{n=-\infty}^{1}(-1)^{-n-1}z^{n}$
(c)|z|>2
$f(z)= \frac{2}{z}\frac{1}{1-\frac{2}{z}}$+$\frac{1}{z}\frac{1}{1+\frac{1}{z}}$
$=\sum_{n=0}^{\infty}\frac{2}{z}(\frac{2}{z})^n+\frac{1}{z}(\frac{-1}{z})^n$
$=\sum_{n=0}^{\infty}\frac{2^{n+1}}{z^{n+1}}+\frac{(-1)^n}{z^{n+1}}$
$=\sum_{n=-\infty}^{0}(2^{n+1}+(-1)^n)z^{n-1}$
$=\sum_{n=-\infty}^{1}(2^{n+2}+(-1)^{n+1})z^{n}$