Toronto Math Forum
Welcome,
Guest
. Please
login
or
register
.
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
News:
Home
Help
Search
Calendar
Login
Register
Toronto Math Forum
»
MAT334-2018F
»
MAT334--Tests
»
Quiz-2
»
Q2 TUT 0102
« previous
next »
Print
Pages: [
1
]
Author
Topic: Q2 TUT 0102 (Read 4706 times)
Victor Ivrii
Administrator
Elder Member
Posts: 2607
Karma: 0
Q2 TUT 0102
«
on:
October 05, 2018, 06:12:30 PM »
Find all points of continuity of the given function:
\begin{equation*}(z)=(1-|z|^2)^{-3}.
\end{equation*}
Logged
Ye Jin
Full Member
Posts: 17
Karma: 9
Re: Q2 TUT 0102
«
Reply #1 on:
October 05, 2018, 06:54:08 PM »
Since\begin{equation*} |z|^2=x^2+y^2\end{equation*},
then \begin{equation*}g(z)= \frac{1}{[1-(x^2+y^2)]^3}\end{equation*}
Hence, g(z) is not continuous at all points of circle \begin{equation*}x^2+y^2=1\end{equation*}
«
Last Edit: October 05, 2018, 07:09:38 PM by Ye Jin
»
Logged
Print
Pages: [
1
]
« previous
next »
Toronto Math Forum
»
MAT334-2018F
»
MAT334--Tests
»
Quiz-2
»
Q2 TUT 0102