Deadline Wednesday, October 31.

APM 346 (2012) Home Assignment 5

Some of the problems in this assignment could be solved based on the other problems and such solutions are much shorter than from the scratch; seeing and exploiting connections is a plus.
Here $\mathbb{N}=$
$1,2,3, \ldots$,
Problem 1 Decompose into full Fourier series on interval $[-l, l]$:
(a) $e^{z x}$ where $z \in \mathbb{C}$; find "exceptional" values of z;
(b) $\cos (\omega x), \sin (\omega x)$ where $0<\omega \in \mathbb{R}$; fins "exceptional" values of ω;
(c) $\cosh (\eta x), \sinh (\eta x)$ where $0<\eta \in \mathbb{R}$.

Problem 2 Decompose into full Fourier series on interval $[-l, l]$ and sketch the graph of the sum of such Fourier series:
(a) x;
(b) $|x|$;
(c) x^{2}.

Problem 3 Decompose into full Fourier series on interval $[-\pi, \pi]$ and sketch the graph of the sum of such Fourier series:
(a) $|\sin (x)|$;
(b) $|\cos (x)|$.

Problem 4 Decompose into sin Fourier series on interval $[0, \pi]$ and sketch the graph of the sum of such Fourier series:
(a) 1 ;
(b) x;
(c) $\sin (m x)$ with $m \in \mathbb{N}$;
(d) $\cos (m x)$ with $m \in \mathbb{N}$;
(e) $\sin \left(\left(m-\frac{1}{2}\right) x\right)$ with $m \in \mathbb{N}$.

Problem 5 Decompose into sin Fourier series on interval $[0, \pi]$ and sketch the graph of the sum of such Fourier series:
(a) 1 ;
(b) x;
(c) $\sin (m x)$ with $m \in \mathbb{N}$;
(d) $\cos (m x)$ with $m \in \mathbb{N}$;
(e) $\sin \left(\left(m-\frac{1}{2}\right) x\right)$ with $m \in \mathbb{N}$.

Problem 6 Decompose into Fourier series with respect to $\sin \left(\left(n+\frac{1}{2}\right) x\right)$ ($n=0,1, \ldots$) on interval $[0,2 \pi]$ and sketch the graph of the sum of such Fourier series:
(a) 1 ;
(b) x;
(c) $\sin (m x)$ with $m \in \mathbb{N}$;
(d) $\cos (m x)$ with $m \in \mathbb{N}$;
(e) $\sin \left(\left(m-\frac{1}{2}\right) x\right)$ with $m \in \mathbb{N}$.

