First we have
\begin{equation}
\int\limits_{\mid z+1 \mid = 2}\frac{z^2}{4-z^2}\,dz = \int\limits_{\mid z+1 \mid = 2}\frac{z^2}{(2+z)(2-z)}\,dz
\end{equation}
Point $z=2$ is outside of the circle $\mid z+1 \mid = 2$ and Point $z=-2$ is inside of the circle $\mid z+1 \mid = 2$
\begin{equation}
\int\limits_{\mid z+1 \mid = 2}\frac{z^2/(z-2)}{(z+2)}\,dz = \int\limits_{\mid z+1 \mid = 2}\frac{z^2/(z-2)}{z-(-2)}\,dz
\end{equation}
This gives us function $f(z)$
\begin{equation}
f(z) = \frac{z^2}{2-z} \Rightarrow f(-2) = \frac{(-2)^2}{2-(-2)} = \frac{4}{4} = 1
\end{equation}
So Cauchy's Formula gives us
\begin{equation}
\int\limits_{\mid z+1 \mid = 2}\frac{z^2}{4-z^2}\,dz = 2\pi if(-2) = 2\pi i
\end{equation}