Toronto Math Forum
Welcome,
Guest
. Please
login
or
register
.
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
News:
Home
Help
Search
Calendar
Login
Register
Toronto Math Forum
»
MAT334-2018F
»
MAT334--Tests
»
Quiz-5
»
Q5 TUT 5301
« previous
next »
Print
Pages: [
1
]
Author
Topic: Q5 TUT 5301 (Read 5307 times)
Victor Ivrii
Administrator
Elder Member
Posts: 2607
Karma: 0
Q5 TUT 5301
«
on:
November 02, 2018, 03:34:33 PM »
Find the power-series expansion about the given point for the given function; find the largest disc in which the series is valid:
$$\frac{z+2}{z+3}\qquad\text{about}\; z_0 = -1.$$
Logged
Tianfangtong Zhang
Full Member
Posts: 16
Karma: 15
Re: Q5 TUT 5301
«
Reply #1 on:
November 02, 2018, 03:43:00 PM »
\begin{align*}
\frac{z+2}{z+3} &= \frac{z+3-1}{z+3} \\ &= 1-\frac{1}{z+3}\\
&= 1- \frac{1}{z+1+2} \\ &= 1 - \frac{1}{2} \frac{1}{1+\frac{z+1}{2}}\\
&= 1 - \frac{1}{2} \frac{1}{1-\frac{-(z+1)}{2}}\\
&= 1 - \sum_{n=0}^{\infty}(\frac{-(z+1)}{2})^n \\
&= 1 - \sum_{n=0}^{\infty}\frac{(-1)^n}{2^{n+1}}(z-(-1))^n
\end{align*}
Logged
Ende Jin
Sr. Member
Posts: 35
Karma: 11
Re: Q5 TUT 5301
«
Reply #2 on:
November 03, 2018, 02:29:15 PM »
For the former one, the largest disc is $\{z: |z + 1| < 2\}$
For the latter one, the largest disc is the whole complex plane.
«
Last Edit: November 04, 2018, 09:41:37 PM by Victor Ivrii
»
Logged
Print
Pages: [
1
]
« previous
next »
Toronto Math Forum
»
MAT334-2018F
»
MAT334--Tests
»
Quiz-5
»
Q5 TUT 5301