Toronto Math Forum

APM346-2015F => APM346--Tests => Final Exam => Topic started by: Victor Ivrii on December 18, 2015, 07:52:03 PM

Title: FE-7
Post by: Victor Ivrii on December 18, 2015, 07:52:03 PM
Solve
\begin{align}
&\Delta u=0 && x^2+y^2+z^2<1,\label{7-1}\\
&u=g(x,y,z) && x^2+y^2+z^2=1\label{7-2}
\end{align}
with $g(x,y,z)=z(x^2+y^2)$.

Hint. If $g$ is a polynomial of degree $m$ look for
\begin{equation}
u=g - P(x,y,z)(x^2+y^2+z^2-R^2)
\label{7-3}
\end{equation}
 with $P$ a polynomial of degree  $(m-2)$. Here $R$ is the radius of the ball. If $g$ has some rotational symmetry, so $P$ has.


Bonus
Represent $u$ as a sum of homogeneous harmonic polynomials.
Title: Re: FE-7
Post by: Yiqi Shi on December 18, 2015, 10:27:19 PM
Since g is a polynomial of degree 3, the The degree of $P$ should be 1. Also, notice that $g$ is odd about $z$ and $P$ has the same rotational symmetry as $g$, so we can assume $P=kz$.

$$\Delta \mu=2z+2z-2kz-2kz-6kz=0 \implies k=\frac{2}{5}$$\\
Thus,
\begin{equation}
\mu=z(x^2+y^2)-\frac{2}{5}z(x^2+y^2+z^2-1)
\end{equation}
Title: Re: FE-7
Post by: Vivian Tan on December 18, 2015, 10:29:00 PM
$g$ is a degree 3 polynomial, so $P$ will be a degree 1 polynomial. $g$ also has rotational symmetry about the z axis ($x^2+y^2=s^2$ in cylindrical coordinates), so $P$ must does as well. No degree 1 polynomial in $x$ and $y$ can have such symmetry, so $P=az$ only, where $a$ is to be determined. Plugging in this expression for $P$ we obtain:
$$\Delta u=2z+2z-2az-2az-6az=0\Rightarrow a=\frac{2}{5}$$
Therefore the answer is, using $R=1$:
$$u=z(x^2 + y^2)-\frac{2}{5}z(x^2+y^2+z^2-1)$$
Title: Re: FE-7
Post by: Emily Deibert on December 19, 2015, 12:06:50 AM
$g$ is a degree 3 polynomial, so $P$ will be a degree 1 polynomial. $g$ also has rotational symmetry about the z axis ($x^2+y^2=s^2$ in cylindrical coordinates)

Thank you Vivian for explaining why the symmetry exists!
Title: Re: FE-7
Post by: Chi Ma on December 19, 2015, 10:57:57 AM
$u$ can be written as a sum of 3 homogeneous harmonic polynomials.
\begin{equation}
u = -\frac{1}{5}(z^3-3zx^2) -\frac{1}{5}(z^3-3zy^2) + \frac{2}{5}z
\end{equation}
Title: Re: FE-7
Post by: Victor Ivrii on December 21, 2015, 08:10:18 AM
\begin{equation*}
u=\underbracket{\frac{3}{5}zx^2+\frac{3}{5}zy^2-\frac{2}{5}z^3}+\underbracket{\frac{2}{5}z}
\end{equation*}
only 2 homogeneous harmonic polynomials as in your decomposition two have the same order of homogeneity and count as one (as they could be joined)

Those who did not use "rotational symmetry and odd with respect to $z$" arguments were forced to use $u=z (x^2+y^2) - (Ax+By+Cz +D) (x^2+y^2+z^2-1)$ rather than $u=z (x^2+y^2) - Cz (x^2+y^2+z^2-1)$ and never performed calculations.