(a) Find the general solution of
$$
\mathbf{x}'=\begin{pmatrix}\hphantom{-}2 &\hphantom{-}1\\
-3 &-2\end{pmatrix}\mathbf{x}.$$
(b) Sketch corresponding trajectories. Describe the picture (stable/unstable, node, focus, center, saddle).
(c) Solve
$$
\mathbf{x}'=\begin{pmatrix}\hphantom{-}2 &\hphantom{-}1\\
-3 &-2\end{pmatrix}\mathbf{x} +
\begin{pmatrix}\hphantom{-} \frac{4}{e^t+e^{-t}} \\
-\frac{12}{e^t+e^{-t}}\end{pmatrix},\qquad
\mathbf{x}(0)=\begin{pmatrix} 0 \\
0\end{pmatrix}.
$$