Hello everyone, I am wondering why the range of $\theta$ is $[0,\pi]$ instead of $[\pi,0]$.
Then the integral estimation would be $ |\int_{\gamma_{\epsilon}} f(z) \text{d}z| \leq \int_{\pi}^{0} |f(z)| \text{d}z = \frac{-\pi \epsilon}{\sqrt{\epsilon} (1-{\epsilon}^2)}$ goes to 0 as $\epsilon$ close to 0+.