APM 346 (2012) Home Assignment 1

Problem 1

a. Find general solution

$$
\begin{equation*}
u_{x}-3 u_{y}=0 ; \tag{1}
\end{equation*}
$$

b. Solve IVP problem $\left.u\right|_{x=0}=e^{-y^{2}}$ for equation (1) in \mathbb{R}^{2};
c. Consider equation (1) in $\{x>0, y>0\}$ with the initial condition $\left.u\right|_{x=0}=y$ ($y>0$); where this solution defined? Is it defined everywhere in $\{x>0, y>0\}$ or do we need to impose condition at $y=0$? In the latter case impose condition $\left.u\right|_{y=0}=x(x>0)$ and solve this IVBP;
d. Consider equation (1) in $\{x<0, y>0\}$ with the initial condition $\left.u\right|_{x=0}=y$ ($y>0$); where this solution defined? Is it defined everywhere in $\{x<0, y>0\}$ or do we need to impose condition at $y=0$? In the latter case impose condition $\left.u\right|_{y=0}=x(x<0)$ and solve this IVBP.

Problem 2

Corrected
a. Find the general solution of

$$
\begin{equation*}
x u_{x}+4 y u_{y}=0 \tag{2}
\end{equation*}
$$

in $\{(x, y) \neq(0,0)\}$; when this solution is continuous at $(0,0)$?
b. Find the general solution of

$$
\begin{equation*}
x u_{x}-4 y u_{y}=0 \tag{3}
\end{equation*}
$$

in $\{(x, y) \neq(0,0)\}$; when this solution is continuous at $(0,0)$?
c. Explain the difference.

Problem 3

Find the solution of

$$
\left\{\begin{array}{l}
u_{x}+3 u_{y}=x y \tag{4}\\
\left.u\right|_{x=0}=0
\end{array}\right.
$$

Problem 4

Corrected
a. Find the general solution of

$$
\begin{equation*}
y u_{x}-x u_{y}=x y ; \tag{5}
\end{equation*}
$$

b. Find the general solution of

$$
\begin{equation*}
y u_{x}-x u_{y}=x^{2}+y^{2} \tag{6}
\end{equation*}
$$

c. In one instanse solution does not exist. Explain why.

Problem 5

a. Find the general solution of

$$
\begin{equation*}
u_{t t}-9 u_{x x}=0 \tag{7}
\end{equation*}
$$

b. Solve IVP

$$
\begin{equation*}
\left.u\right|_{t=0}=x^{2},\left.\quad u_{t}\right|_{t=0}=x \tag{8}
\end{equation*}
$$

for (7);
c. Consider (7) in $\{x>3 t, x>-3 t\}$ and find a solution to it, satisfying Goursat problemCorrected September 23

$$
\begin{equation*}
\left.u\right|_{x=3 t}=t,\left.\quad u\right|_{x=-3 t}=2 t . \tag{9}
\end{equation*}
$$

Problem 6

Derivation of a PDE describing traffic flow. The purpose of this problem is to derive a model PDE that describes a congested onedimensional highway. Let

- $\rho(x, t)$ denote the traffic density : the number of cars per kilometer at time t located at position x;
- $q(x, t)$ denote the traffic flow: the number of cars per hour passing a fixed
place x at time t;
- $N(t, a, b)$ denote the number of cars between position $x=a$ and $x=b$ at time t.
a. Derive a formual for $N(t, a, b)$ as an integral of the traffic density. You can assume there are no exits or entrances between position a and b.
b. Derive a formula for $\frac{\partial N}{\partial t}$ depending on the traffic flow. '"Hint:"' You can express the change in cars between time $t_{1}=t$ and $t_{2}=t+h$ in terms of of traffic flow;
c. Differentiate with respect to t the integral form for N from part (a) and make it equal to the formula you got in part (b). This of the integral form of conservation of cars;
d. Express the right hand side of the formula of part (c) in terms of an integral. Since a, b are arbitrary, obtain a PDE. This PDE is called the conservation of cars equation;
e. What equation do you get in part (4) if $q=c \rho$, for some constant c. What choice of c would be more realistic, i.e. what should c be function of?

