Separation of variables results in $X''+\lambda X=0$, $X'(0)=X'(1)=0$ and thus $\lambda_0=0$, $X_0= \frac{1}{2}$ and $\lambda_n=\pi^2n^2$, $X_n=\cos (\pi n x)$ with $n=1,2,\ldots$; also $T''+4\pi^2 T=0$ and thus $T_0=A_0+B_0t$, $T_n= A_n \cos (2\pi n t)+B_n \sin (2\pi n t)$, and
\begin{equation}
u=\frac{1}{2}(A_0+B_0t) + \sum_{n=1}^\infty \Bigl(A_n \cos (2\pi n t)+B_n \sin (2\pi n t)\Bigr)\cos (\pi n x).
\end{equation}
The initial conditions result in
\begin{equation*}
\frac{1}{2}A_0+ \sum_{n=1}^\infty A_n \cos (\pi n x)=x(1-x),\qquad
\frac{1}{2}B_0 + \sum_{n=1}^\infty 2\pi n B_n \cos (\pi n x)=0
\end{equation*}
and $B_n=0$ ($n=0,1,2,\ldots$) and
\begin{multline*}
A_n =2 \int_0^1 x(1-x)\cos (\pi n x)\,dx=- \frac{2}{\pi n} \int_0^1 (1-2x) \sin (\pi nx)=\\
-\frac{2}{\pi ^2n^2 } (1-2x) \cos (\pi nx)\Bigr|_{x=0}^{x=1} +
\frac{4}{\pi ^2n^2 } \int_0^1 \cos (\pi nx)\,dx =\left\{\begin{aligned} -\frac{1}{\pi ^2m^2 } & && n=2m,\\
0& &&n=2m+1\end{aligned}\right.
\end{multline*}
$m=1,2, \ldots$. Meanwhile $A_0=\frac{1}{3}$. Then
\begin{equation*}
u=\frac{1}{12}- \sum_{m=1}^\infty \frac{1}{\pi^2m^2} A_n \cos (4\pi m t)\cos (2\pi m x).
\end{equation*}