Domain is a sector $-\frac{\pi}{3}<\theta < \frac{\pi}{3}$:
Then
\begin{equation*}
P''+\lambda P =0,\qquad P(-\frac{\pi}{3})=P(\frac{\pi}{3})=0.
\end{equation*}
Since our problem is symmetric with respect to $y=0$ and $u(a,\theta)=a\sin (\theta)$ is an odd function we can replace this problem by
\begin{equation*}
P''+\lambda P =0,\qquad P(0)=P(\frac{\pi}{3})=0
\end{equation*}
and $\lambda_n= 9 n^2$, $P_n = \sin (3n\theta )$ with $n=1,2,\ldots$
Then $r^2R_n'' + rR_n'+9n^2 R_n=0$ and $R_n=A_nr^{3n}+Br_n^{-3n}$ and we need to take $B_n=0$.
So,
\begin{equation*}
u(r,\theta)=\sum_{n=1}^\infty A_n r^{3n } \sin (3 n \theta ).
\end{equation*}
We need to satisfy
\begin{equation*}
u(a,\theta)=\sum_{n=1}^\infty A_n a^{3n} \sin (3 n \theta )= a\sin (\theta)
\end{equation*}
and therefore
\begin{multline*}
A_n a^{3n} =\frac{6a}{\pi }\int_{0}^{\frac{\pi}{3}} \sin (3n \theta )\sin (\theta)\,d\theta=
\frac{3a}{\pi }\int_{0}^{\frac{\pi}{3}} \Bigl[ \cos ((3n-1)\theta)-\cos ((3n+1)\theta) \Bigr]\,d\theta=\\[3pt]
\frac{3a}{\pi } \Bigl[ \frac{\sin ((3n-1)\theta)}{3n-1}-\frac{\sin ((3n+1)\theta)}{3n+1} \Bigr]_{\theta=0}^{\theta=\pi/3}=
\frac{3a}{\pi } \Bigl[ \frac{\sin (\pi n- \frac{\pi}{3})}{3n-1}-\frac{\sin (\pi n +\frac{\pi}{3}}{3n+1} \Bigr]=\\[3pt]
\frac{3a}{2\pi } (-1)^{n+1}\Bigl[ \frac{1}{3n-1}+\frac{1}{3n+1} \Bigr]= (-1)^{n+1}\frac{9n a}{(9n^2-1)\pi }
\end{multline*}
and
\begin{equation*}
u(r,\theta)=\sum_{n=1}^\infty (-1)^{n+1}\frac{9n }{(9n^2-1)\pi } a^{1-3n} r^{3n } \sin (3 n \theta ).
\end{equation*}