Looking at $u(x,y)=X(x)Y(y)$ we get $Y''+\lambda Y=0$, $Y(0)=Y(\pi)=0$ and therefore $\lambda_n=n^2$, $Y_n=\sin (ny)$, $n=1,2,\ldots$,
$X_n''-n^2 X_n=0$, $X_n=A_ne^{-nx}+B_n e^{nx}$ with $B_n=0$ (or solution would be unbounded), and
\begin{equation*}
u(x,y)=\sum_{n=1}^\infty A_n e^{-nx}\sin(ny);
\end{equation*}
then
\begin{equation*}
u_x(0,y)=\sum_{n=1}^\infty -n A_n\sin(ny)=1
\end{equation*}
and
\begin{equation*}
nA_n =-\frac{2}{\pi} \int_0^\pi \sin (ny)\,dy= \frac{2}{n\pi}\cos(ny)\Bigr|_0^\pi = \left\{\begin{aligned}
&0 && n=2m,\\
-&\frac{4}{n\pi} && n=2m+1
\end{aligned}\right.
\end{equation*}
and
\begin{equation}
u(x,y)=-\sum_{m=0}^\infty \frac{4}{(2m+1)^2\pi} e^{-(2m+1)x}\sin((2m+1)y);
\end{equation}