1
Final Exam / Re: FE-P1
« on: December 18, 2018, 01:46:33 PM »
$$f(z) = \frac{A}{z-(-1+i)} + \frac{B}{z-(-1-i)}$$
Solve A, B
$$A = -\frac{i}{2}, B = \frac{i}{2}$$
Then
$$f(z) = -\frac{i}{2}\frac{1}{z-(-1+i)} +\frac{i}{2} \frac{1}{z-(-1-i)}$$
When $\mid z \mid = r$
$$f(z) = -\frac{i}{2} \frac{1}{-1+i} \frac{1}{\frac{z}{-1+i}-1} + \frac{i}{2}\frac{1}{-1-i}\frac{1}{\frac{z}{-1-i}-1} $$
$$ = \frac{i}{2} \frac{1}{-1+i} \frac{1}{1 - \frac{z}{-1+i}} - \frac{i}{2}\frac{1}{-1-i}\frac{1}{1 - \frac{z}{-1-i}} $$
$$ = \frac{i}{2} \frac{1}{-1+i} \sum_{n=0}^{\infty} (\frac{z}{-1+i})^{n} - \frac{i}{2}\frac{1}{-1-i}\sum_{n=0}^{\infty}(\frac{z}{-1-i})^{n} $$
So that converge at
$$\mid \frac{z}{-1+i} \mid < 1$$
$$ \mid z \mid < \sqrt{2}$$
So that not converge at $\mid z \mid = \sqrt{2}$
When $\mid z \mid = R$
$$f(z) = -\frac{i}{2} \frac{1}{z} \frac{1}{ 1 - \frac{-1+i}{z}} + \frac{i}{2}\frac{1}{z}\frac{1}{1 - \frac{-1-i}{z}} $$
$$ = \frac{i}{2} \frac{1}{z} \sum_{n=0}^{\infty} (\frac{-1+i}{z})^{n} + \frac{i}{2}\frac{1}{z}\sum_{n=0}^{\infty}(\frac{-1-i}{z})^{n} $$
So that converge at
$$\mid \frac{-1+i}{z} \mid < 1$$
$$ \mid z \mid > \sqrt{2}$$
So that not converge at $\mid z \mid = \sqrt{2}$
Solve A, B
$$A = -\frac{i}{2}, B = \frac{i}{2}$$
Then
$$f(z) = -\frac{i}{2}\frac{1}{z-(-1+i)} +\frac{i}{2} \frac{1}{z-(-1-i)}$$
When $\mid z \mid = r$
$$f(z) = -\frac{i}{2} \frac{1}{-1+i} \frac{1}{\frac{z}{-1+i}-1} + \frac{i}{2}\frac{1}{-1-i}\frac{1}{\frac{z}{-1-i}-1} $$
$$ = \frac{i}{2} \frac{1}{-1+i} \frac{1}{1 - \frac{z}{-1+i}} - \frac{i}{2}\frac{1}{-1-i}\frac{1}{1 - \frac{z}{-1-i}} $$
$$ = \frac{i}{2} \frac{1}{-1+i} \sum_{n=0}^{\infty} (\frac{z}{-1+i})^{n} - \frac{i}{2}\frac{1}{-1-i}\sum_{n=0}^{\infty}(\frac{z}{-1-i})^{n} $$
So that converge at
$$\mid \frac{z}{-1+i} \mid < 1$$
$$ \mid z \mid < \sqrt{2}$$
So that not converge at $\mid z \mid = \sqrt{2}$
When $\mid z \mid = R$
$$f(z) = -\frac{i}{2} \frac{1}{z} \frac{1}{ 1 - \frac{-1+i}{z}} + \frac{i}{2}\frac{1}{z}\frac{1}{1 - \frac{-1-i}{z}} $$
$$ = \frac{i}{2} \frac{1}{z} \sum_{n=0}^{\infty} (\frac{-1+i}{z})^{n} + \frac{i}{2}\frac{1}{z}\sum_{n=0}^{\infty}(\frac{-1-i}{z})^{n} $$
So that converge at
$$\mid \frac{-1+i}{z} \mid < 1$$
$$ \mid z \mid > \sqrt{2}$$
So that not converge at $\mid z \mid = \sqrt{2}$