Writing characteristic equation: $L(k):= k^3-3k^2+4k-2=0$. Obviously, one root $k_1=1$; then $k_2+k_3= 2$, $k_1k_2=2$ and they satisfy $k^2-2k+2=0\implies k_{1,2}= 1\pm i$. Then
\begin{equation}
y^*= C_1e^t + C_2 e^t \cos(t) + C_3 e^t\sin(t)
\label{eq-2-1}
\end{equation}
is a general solution to the homogeneous equation.
Solving inhomogeneous equations with RHE $f_1=10e^{t}$, $f_2=10 e^{-t}$, $f_3=\cos(t)$:
\begin{align*}
&y_{p1}= At e^t,\\
&y_{p2}=Be^{-t},\\
&y_{p3}= C\cos(t)+D\sin(t).
\end{align*}
Here $A L'(k)|_{k=1} = A(3k^2-6k+4)|_{k=1}=10\implies A=10$,
$BL(-1) =-10 B=10\implies B=-1$ and
$$
(C+iD)L(i)= (A+iB) (1+3i)=20\implies
C+iD= \frac{20}{1+3i}=\frac{20(1-3i)}{10}=
2-6i\implies C=2, D=6.
$$
Then
\begin{align*}
&y_{p1}= 10t e^t,\\
&y_{p2}=-e^{-t},\\
&y_{p3}= 2\cos(t)+6\sin(t).
\end{align*}
Finally
$$
y= \underbracket{10t e^{t}}_{y_{p1}}\underbracket{-e^{-t}}_{y_{p2}}+ \underbracket{2\cos(t)+6\sin(t)}_{y_{p3}} + \underbracket{C_1e^t + C_2 e^t \cos(t) + C_3 e^t\sin(t)}_{y^*}.
$$