MAT244--2018F > Quiz-4
Q4 TUT 03014
Victor Ivrii:
Find the general solution of the given differential equation.
$$
y'' + 9y = 9 \sec^2 (3t),\qquad 0< t < \frac{\pi}{6}.
$$
Yunqi(Yuki) Huang:
For the left-hand side, we could write as $r^2+9=0$.Thus $r=3i$ or $r=-3i.
$
Now $Y_{c}=C_{1}cos3t+C_{2}sin3t
$
For the Right-hand side, $Y_{1}(t)=cos3t$, $Y_{2}(t)+sin3t$, $g(t)=9sec^2(3t)$
$$W(t)=\left[
\begin{matrix}
cos3t & sin3t \\
-3sin3t& 3cos3t
\end{matrix}
\right] \tag{3}=3
$$
$$W_{1}(t)=\left[
\begin{matrix}
0 & sin3t \\
1 & 3cos3t
\end{matrix}
\right] \tag{3}=-sin3t
$$
$$W_{2}(t)=\left[
\begin{matrix}
cos3t & 0 \\
-3sin3t& 1
\end{matrix}
\right] \tag{3}=cos3t
$$
So, the particular solution is $$Y_{p}(t)=Y_{1}\int\frac{g(s)W_{1}(s)}{W(s)}\,ds+Y_{2}\int\frac{g(s)W_2(s)}{W(s)}\,ds=-1+\sin(3t)\ln |\sec(3t)+\tan(3t)|$$
Thus, the general solution is $Y(t)=C_{1}cos(3t)+C_{2}sin(3t)+sin(3t)ln$||sec(3t)+tan(3t)||-1
Yunqi(Yuki) Huang:
For the left-hand side, we could write as $r^2+9=0$.Thus $r=3i$ or $r=-3i.
$
Now $Y_{c}=C_{1}cos3t+C_{2}sin3t
$
For the Right-hand side, $Y_{1}(t)=cos3t$$. Y_{2}(t)+sin3t$$. g(t)=9sec^2(3t)$
$$W(t)=\left[
\begin{matrix}
cos3t & sin3t \\
-3sin3t& 3cos3t
\end{matrix}
\right] \tag{3}=3
$$
$$W_{1}(t)=\left[
\begin{matrix}
0 & sin3t \\
1 & 3cos3t
\end{matrix}
\right] \tag{3}=-sin3t
$$
$$W_{2}(t)=\left[
\begin{matrix}
cos3t & 0 \\
-3sin3t& 1
\end{matrix}
\right] \tag{3}=cos3t
$$
So, the particular solution is $Y_{p}(t)=Y_{1}\int\frac{g(s)W_{1}(s)}{W(s)}\,ds+Y_{2}\int\frac{W(s)}\,ds=-1+sin(3t)ln$||sec(3t)+tan(3t)||
Thus, the general solution is $Y(t)=C_{1}cos(3t)+C_{2}sin(3t)+sin(3t)ln$|sec(3t)+tan(3t)|-1
Victor Ivrii:
1) Need to escape \sin (x) , \ln (x) etc producing $\sin (x)$,...
2) Do not put dollar signs inside math formula! Only around it
Fix it
3) Where the constants from integration?
Michael Poon:
--- Quote from: Yunqi(Yuki) Huang on October 26, 2018, 05:59:28 PM ---So, the particular solution is $Y_{p}(t)=Y_{1}\int\frac{g(s)W_{1}(s)}{W(s)}\,ds+Y_{2}\int\frac{W(s)}\,ds=-1+sin(3t)ln$||sec(3t)+tan(3t)||
--- End quote ---
Small correction, likely due to typesetting error, but I think you mean the following:
So, the particular solution is $Y_{p}(t)=Y_{1}\int\frac{g(s)W_{1}(s)}{W(s)}\,ds+Y_{2}\int\frac{g(s)W_{2}(s)}{W(s)}\,ds=-1+sin(3t)ln|sec(3t)+tan(3t)|$
Navigation
[0] Message Index
[#] Next page
Go to full version