Problem 1.1 (1pt). Consider first order equations and determine if they are linear homogeneous, linear inhomogeneous, quasilinear or non-linear (u is an unknown function):

$$u_t + xu_x = 0, \tag{1.1}$$

$$u_t + uu_x = 0. (1.2)$$

Answer. (7.1) Linear homogeneous, (7.2) Quasilinear

Problem 1.2 (2pt). Find the general solutions to the following equation:

$$u_{xxyy} = \sin(x)\sin(y) \tag{1.3}$$

Solution. Integrating by x, x, y and y:

$$u_{xxyy} = \sin(x)\sin(y) \implies u_{xxy} = -\sin(x)\cos(y) + \phi''(x) \implies$$

$$u_{xx} = -\sin(x)\sin(y) + \phi''(x)y + \phi''_1(x) \implies$$

$$u_x = \cos(x)\sin(y) + \phi'(x)y + \phi'_1(x) + \psi(y) \implies$$

$$u = \sin(x)\sin(y) + \phi(x)y + \phi_1(x) + \psi(y)x + \psi_1(y)$$

where $\phi, \phi_1, \psi, \psi_1$ are arbitrary functions.

Problem 1.3 (2pt). Find the solution of

$$\begin{cases} u_x + 3u_y = xy, \\ u|_{x=0} = 0. \end{cases}$$
 (1.4)

Solution.

$$\frac{dx}{1} = \frac{dy}{3} = \frac{du}{3xy} \implies y - 3x = C_1 \implies du = x(3x + C_1)dx \implies u = x^3 + \frac{1}{2}C_1x^2 + C_2$$

with $C_2 = \phi(C_1)$ with arbitrary function ϕ ; so

$$u = x^{3} + \frac{1}{2}(y - 3x)x^{2} + \phi(y - 3x) = \frac{1}{2}x^{2}y - \frac{1}{2}x^{3} + \phi(y - 3x)$$

is the general solution to equation. Plugging into initial condition we get $\phi(y)=0$ and thus

$$u = x^{3} + \frac{1}{2}(y - 3x)x^{2} + \phi(y - 3x) = \frac{1}{2}x^{2}y - \frac{1}{2}x^{3}$$

is the final answer.

Problem 2.1 (5pt). Solve IVP

$$u_{tt} - 4u_{xx} = 0, (2.1)$$

$$u|_{t=0} = g(x), \quad u_t|_{t=0} = h(x)$$
 (2.2)

with

$$g(x) = \begin{cases} \cos(x) & |x| < \pi/2, \\ & h(x) = 0. \end{cases}$$
 (2.3)

Solution. See figure; here $\left(-\frac{1}{2}, \frac{\pi}{2}\right)$ (on t=0) is bold, characteristics passing through its ends $x-2t=\mathrm{const}$ and $x+2t=\mathrm{const}$ are teal and orange and in the central diamond $u=\frac{1}{2}\cos(x+2t)+\frac{1}{2}\cos(x-2t)=\cos(x)\cos(2t)$.

Problem 3.1 (5pt). Find solution

$$u_{tt} - c_1^2 u_{xx} = 0, t > 0, x > 0, (3.1)$$

$$u_{tt} - c_2^2 u_{xx} = 0, (3.2)$$

$$u|_{t=0} = \phi(x),$$
 $u_t|_{t=0} = c_1 \phi'(x)$ $x > 0,$ (3.3)

$$u|_{t=0} = 0,$$
 $u_t|_{t=0} = 0,$ $x < 0,$ (3.4)

$$u|_{x=+0} = \alpha u|_{x=-0}, \qquad u_x|_{x=+0} = \beta u_x|_{x=-0} \qquad t > 0$$
 (3.5)

(separately in $x > c_1 t$, $0 < x < c_1 t$, $-c_2 t < x < 0$ and $x < -c_2 t$.

Solution. See figure. Observe that in $\{x > 0\}$, $\{x < -c_2t\}$ the general solution is

$$u(x,t) = \varphi_1(x+c_1t) + \psi_1(x-c_1t), \tag{3.6}$$

$$u(x,t) = \varphi_1(x + c_2 t) + \psi_1(x - c_2 t), \tag{3.7}$$

due to (7.1), (7.2) respectively. Plugging (6.6) and (4.7) into (6.3) and (6.4)respectively we get

$$\varphi_1(x) + \psi_1(x) = \phi(x), \quad c_1\varphi_1(x) - c_1\psi_1(x) = \phi'(x), \quad x > 0,$$
 (3.8)

$$\varphi_2(x) + \psi_2(x) = 0,$$
 $c_2\varphi_2(x) - c_2\psi_2(x) = 0$ $x < 0.$ (3.9)

which (up to constants which do not affect u(x,t)) imply

$$\varphi_1(x) = \phi(x), \qquad \psi_1(x) = 0, \qquad x > 0, \qquad (3.10)$$

$$\varphi_2(x) = 0, \qquad \psi_2(x) = 0 \qquad x < 0. \qquad (3.11)$$

$$\varphi_2(x) = 0,$$
 $\psi_2(x) = 0$ $x < 0.$ (3.11)

which gives us $u(x,t) = \phi(x+c_1t)$ as $x > c_1t$ and u(x,t) = 0 as $x_1 < -c_2t$. Now we are doing the most important thing: finding $\psi_1(x)$ as x < 0 and $\varphi_2(x)$ as x > 0. From (7.5) as t > 0:

$$\varphi_1(c_1t) + \psi_1(-c_1t) = \alpha(\varphi_2(c_2t) + \psi_2(-c_2t)),$$

$$\varphi_1'(c_1t) + \psi_1'(-c_1t) = \beta(\varphi_2'(c_2t) + \psi_2'(-c_2t))$$

and plugging (4.11) and (4.12) we get

$$\phi(c_1 t) + \psi_1(-c_1 t) = \alpha \varphi_2(c_2 t), \tag{3.12}$$

$$c_1^{-1}\phi(c_1t) - c_1^{-1}\psi_1(c_1t) = \beta c_2^{-1}\varphi(c_2t)$$
(3.13)

where we already integrated $\phi'(c_1t) + \psi'_1(-c_1t) = \beta \varphi'_2(c_2t)$. Solving this system we get

$$\psi_1(-c_1t) = K_1\phi(c_1t), K_1 = (\alpha c_1^{-1} - \beta c_2^{-1})/(\alpha c_1^{-1} + \beta c_2^{-1}),$$

$$\varphi_2(c_2t) = K_2\phi(c_1t), K_2 = 2c_1^{-1}/(\alpha c_1^{-1} + \beta c_2^{-1})$$

which implies what on the figure

Problem 4.1 (5pt). Oscillations of the beam are described by equation

$$u_{tt} + K u_{xxxx} = 0, 0 < x < l. (4.1)$$

with K > 0.

If both ends clamped (that means having the fixed positions and directions) then the boundary conditions are

$$u(0,t) = u_x(0,t) = 0, (4.2)$$

$$u(l,t) = u_x(l,t) = 0.$$
 (4.3)

- (a) Find equation describing frequencies and corresponding eigenfunctions (You may assume that all eigenvalues are real and positive).
- (d) **Bonus** [+1pt] Prove that eigenvalues are simple, i.e. all eigenfunctions corresponding to the same eigenvalue are proportional.

Hint. Change coordinate system so that interval becomes [-L,L] with L=1/2; consider separately even and odd eigenfunctions.

Solution. Separating variables u(x,t) = X(x)T(t) we arrive to

$$X^{IV} = \omega^4 X,\tag{4.4}$$

$$X(-L) = X'(-L) = 0, (4.5)$$

$$X(L) = X'(L) = 0 (4.6)$$

and

$$T'' + K\omega^4 T = 0 \tag{4.7}$$

with $\omega > 0$ (see Hint).

(a) Solving characteristic equation $k^4 = \omega^4$ we get $k_{1,2} = \pm \omega$, $k_{3,4} = \pm i\omega$ and

$$X = A\cosh(\omega x) + B\sinh(\omega x) + C\cos(\omega x) + D\sin(\omega x). \tag{4.8}$$

Plugging into (7.5), (6.6) we get (dividing $X'(\pm L)$ by ω

$$A\cosh(\omega L) + B\sinh(\omega L) + C\cos(\omega L) + D\sin(\omega L) = 0, \tag{4.9}$$

$$A\sinh(\omega L) + B\cosh(\omega L) - C\sin(\omega L) + D\cos(\omega L) = 0, \qquad (4.10)$$

$$A\cosh(\omega L) - B\sinh(\omega L) + C\cos(\omega L) - D\sin(\omega L) = 0, \qquad (4.11)$$

$$-A\sinh(\omega L) + B\cosh(\omega L) + C\sin(\omega L) + D\cos(\omega L) = 0$$
 (4.12)

and immediately

$$A\cosh(\omega L) + C\cos(\omega L) = 0 \tag{4.13}$$

$$A\sinh(\omega L) - C\sin(\omega L) = 0, \tag{4.14}$$

and

$$B\sinh(\omega L) + D\sin(\omega L) = 0, (4.15)$$

$$B\cosh(\omega L) + D\cos(\omega L) = 0 \tag{4.16}$$

The first system has non-trivial solution iff its determinant is 0

$$\cosh(\omega L)\sin(\omega L) + \cos(\omega L)\sinh(\omega L) = 0 \iff \tanh(\omega L) = -\tan(\omega L). \tag{4.17}$$

The second system has non-trivial solution iff its determinant is 0

$$\cosh(\omega L)\sin(\omega L) - \cos(\omega L)\sinh(\omega L) = 0 \iff \tanh(\omega L) = \tan(\omega L). \tag{4.18}$$

so ω must satisfy either (4.17) or (4.18).

Then, in case (4.17) B=D=0, and up to a constant factor C=1, $A=-\cos(\omega L)/\cosh(\omega L)$ and

$$X(x) = \cos(\omega x) - \frac{\cosh(\omega x)\cos(\omega L)}{\cosh(\omega L)}.$$
 (4.19)

Similarly, in case (4.17)

$$X(x) = \sin(\omega x) - \frac{\sinh(\omega x)\sin(\omega L)}{\sinh(\omega L)}.$$
 (4.20)

(d) (4.17) and (4.18) are not compatible. Indeed, if both hold then $\tanh(\omega L) = 0$ which contradicts to $\omega L > 0$.

Also if (4.17) or (4.18) holds then the corresponding matrix has rank 1: indeed $\cosh(\omega L) \neq 0$.

Therefore the space of solution is 1-dimensional.

Solution 2. Not following Hint. Still

$$X = A\cosh(\omega x) + B\sinh(\omega x) + C\cos(\omega x) + D\sin(\omega x). \tag{4.21}$$

and as x = 0: A + C = 0, B + D = 0 and

$$X = A(\cosh(\omega x) - \cos(\omega x)) + B(\sinh(\omega x) - \sin(\omega x)). \tag{4.22}$$

Then as x = l

$$A(\cosh(\omega l) - \cos(\omega l)) + B(\sinh(\omega l) - \sin(\omega l)) = 0,$$

$$A(\sinh(\omega l) + \sin(\omega l)) + B(\cosh(\omega l) - \cos(\omega l)) = 0$$

where we divided X'(l) by ω . Then it has non-trivial solution if its determinant is 0:

$$\left(\cosh(\omega l) - \cos(\omega l)\right)^2 - \left(\sinh(\omega l) + \sin(\omega l)\right)\left(\sinh(\omega l) - \sin(\omega l)\right) = 0$$

which rewritten as

$$\cosh^{2}(\omega l) - 2\cosh(\omega l)\cos(\omega l) + \cos^{2}(\omega l) - \sinh^{2}(\omega l) + \sin^{2}(\omega l) = 0$$

and since $\cosh^{2}(t) - \sinh^{2}(t) = 1$, $\cos^{2}(t) + \sin^{2}(t) = 1$ we get

$$\cosh(\omega l)\cos(\omega l) = 1 \tag{4.23}$$

and taking $B = (\cosh(\omega l) - \cos(\omega l))$, $A = -(\sinh(\omega l) - \sin(\omega l))$ (up to a common factor) we get

$$X = -(\sinh(\omega l) - \sin(\omega l))(\cosh(\omega x) - \cos(\omega x)) + (\cosh(\omega l) - \cos(\omega l))(\sinh(\omega x) - \sin(\omega x)). \tag{4.24}$$

It is the same solution as Solution 1: one can prove that

$$\cosh(2\omega L)\cos(2\omega L) = 1 \iff \tanh^2(\omega L) = \tan^2(\omega L)$$

(remember, l=2L), and X differ by a shift (by -L) and a factor.

5 Quiz 5

Problem 5.1 (5pts). As $\alpha > 0$ find Fourier transforms of

- (a) (2pts) $e^{-|x|}$;
- (b) $(1.5pts) e^{-|x|} \sin(x);$
- (c) $(1.5pts) xe^{-|x|} \sin(x)$.

Solution. (a) Fourier transform of $e^{-|x|}$:

$$(2\pi)^{-1} \int_{-\infty}^{\infty} e^{-|x|-ikx} dx = (2\pi)^{-1} \left(\int_{-\infty}^{0} e^{(1-ik)x} dx + \int_{0}^{\infty} e^{(-1-ik)x} dx \right) =$$

$$(2\pi)^{-1} \left((1-ik)^{-1} e^{(1-ik)x} \Big|_{x=-\infty}^{x=0} + (-1-ik) e^{(-1-ik)x} \Big|_{x=0}^{x=\infty} \right) =$$

$$(2\pi)^{-1} \left((1-ik)^{-1} - (-1-ik)^{-1} \right) = \frac{1}{\pi(1+k^2)}. \quad (5.1)$$

(b) Since $\sin(x) = \frac{1}{2i} \left(e^{ix} - e^{-ix} \right)$ and multiplication by $e^{i\beta x}$ of u means $k \mapsto k - \beta$ for \hat{u} , F.T. of $e^{-|x|} \sin(x)$ is

$$\frac{1}{2i\pi} \left(\frac{1}{1 + (k-1)^2} - \frac{1}{1 + (k+1)^2} \right). \tag{5.2}$$

(c) Multiplication of u by x means $i\partial_k \hat{u}(k)$ resulting in

$$\frac{1}{2\pi}\partial_k \left(\frac{1}{1+(k-1)^2} - \frac{1}{1+(k+1)^2}\right) = -\frac{1}{2\pi} \left(\frac{k-1}{\left(1+(k-1)^2\right)^2} - \frac{k+1}{\left(1+(k+1)^2\right)^2}\right). (5.3)$$

6 Quiz 6

Problem 6.1 (5pt). Solve

$$\Delta u := u_{xx} + u_{yy} = 0 \qquad \text{in } r < a$$

$$u|_{r=a} = f(\theta).$$

where we use polar coordinates (r, θ) and $f(\theta) = \begin{cases} 1 & 0 < \theta < \pi \\ -1 & \pi < \theta < 2\pi. \end{cases}$

Hint. Use Fourier method rather than Poisson formula.

Solution. Setting $u(r, \theta) = R(r)\Theta(\theta)$ we after separation of variables arrive to

$$\frac{r^2R'' + rR'}{R} + \frac{\Theta''}{\Theta} = 0$$

and since the first term depends on r only, and the second term on θ only we conclude that both are constant; also Θ must be 2π -periodic and therefore

$$\Theta'' + \lambda \Theta = 0, \qquad \Theta(\theta + 2\pi) = \Theta(\theta);$$
 (6.1)

then $\lambda_0 = 0$, $\Theta_0 = \frac{1}{2}$ and $\lambda_n = \pi^2 n^2$, $\Theta_{n,1} = \cos(n\theta)$, $\Theta_{n,2} = \sin(n\theta)$ for n = 1, 2, ...

Then

$$r^2R'' + rR' + n^2R = 0. (6.2)$$

This is Euler equation and its solutions are $R_0 = A_0 + B_0 \ln r$,

$$R_{n,i} = A_{n,i}r^n + B_{n,i}r^{-n} \text{ or } n = 1, 2, \dots$$

We remove terms with $\ln r$ and r^{-n} since they are singular at the origin and finally

$$u(r,\theta) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} \left(A_n \cos(n\theta) + B_n \sin(n\theta)\right) r^n.$$
 (6.3)

Plugging into Dirichlet boundary condition we get

$$f(\theta) = \frac{1}{2}A_0 + \sum_{n=1}^{\infty} (A_n \cos(n\theta) + B_n \sin(n\theta))a^n.$$
 (6.4)

Then

$$A_n = \frac{1}{\pi a^n} \int_{-\pi}^{\pi} f(\theta) \cos(n\theta) d\theta \qquad n = 0, 1, 2, \dots$$

$$B_n = \frac{1}{\pi a^n} \int_{-\pi}^{\pi} f(\theta) \sin(n\theta) d\theta \qquad n = 1, 2, \dots$$

Since $f(\theta)$ is an odd function $A_n = 0$ and

$$B_n = \frac{2}{\pi a^n} \int_0^{\pi} f(\theta) \sin(n\theta) d\theta \qquad n = 1, 2, \dots$$
 (6.5)

Note No punishment for using all these formulate without deduction. Then

$$B_{n} = \frac{2}{\pi a^{n}} \int_{0}^{\pi} \sin(n\theta) d\theta = -\frac{2}{n\pi a^{2}} \cos(n\theta) \Big|_{\theta=0}^{\theta=\pi} = \begin{cases} 0 & n = 2m, \\ \frac{4}{(2m+1)\pi a^{2}} & n = 2m+1. \end{cases}$$
 (6.6)

Finally

$$u(r,\theta) = \sum_{m=0}^{\infty} \frac{4}{(2m+1)\pi a^2} \sin(2m+1)\theta.$$

7 Quiz 7

Problem 7.1. The heavy flexible but unstretchable wire (chain) has a length and an energy respectively

$$\ell = \int_{-1}^{1} \sqrt{1 + u'^2} \, dx,\tag{7.1}$$

$$U = \rho g \int_{-1}^{1} u \sqrt{1 + u'^2} \, dx \tag{7.2}$$

where ρ is a linear density.

- (a) Write down an equation minimizing energy U as length $\ell=4$ is fixed.
- (b) Find solution satisfying u(-1) = u(1) = 0.
- (c) (bonus) Calculate U.

Hint Since Lagrangian L does not depend on x explicitly, Euler-Lagrange equation is equivalent to $H:=u'L_{u'}-L=\mathrm{const.}$

Solution. (a) Euler-Lagrange functional is

$$\int_{-1}^{1} (u - \lambda) \sqrt{1 + u'^2} \, dx \tag{7.3}$$

with Lagrangian

$$L = (u - \lambda)\sqrt{1 + u'^2}.\tag{7.4}$$

Constant factor ρg does not matter here. Then equation is

$$\sqrt{1 + u'^2} - \left(\frac{(u - \lambda)u'}{\sqrt{1 + u'^2}}\right)' = 0. \tag{7.5}$$

(b) Simpler to use Hint than to solve equation. Then

$$H = -\frac{(u - \lambda)}{\sqrt{1 + u'^2}} = \text{const} \implies$$

$$\sqrt{1 + u'^2} = A(y - \lambda) \implies \frac{du}{A^2(u - \lambda)^2 - 1} = dx \quad (7.6)$$

and integration gives the answer

$$u = \frac{1}{A}\cosh(A(x-B)) + \lambda. \tag{7.7}$$

We have three parameters and three equations. $u(-1) = u(1) = 0 \implies B = 0, \lambda = -\frac{1}{A}\cosh(A)$. So,

$$u = \frac{1}{A}\cosh(Ax) - \frac{1}{A}\cosh(A) \tag{7.8}$$

where A is a root of

$$\int_{-1}^{1} \sqrt{1 + u'^2} \, dx = \int_{-1}^{1} \cosh(Ax) \, dx = \frac{2}{A} \sinh(A) = \ell$$

i.e. sinh(A) = 2A.

(c) Assuming for simplicity $\rho g = 1$

$$U = \int_{-1}^{1} \int_{-1}^{1} u\sqrt{1 + u'^{2}} = \frac{1}{A} \int_{-1}^{1} \left(\cosh(Ax) - \cosh(A) \right) \cosh(Ax) =$$

$$\frac{1}{A} \int_{-1}^{1} \left(\frac{1}{2} \cosh(2Ax) + \frac{1}{2} - \cosh(Ax) \cosh(A) \right) dx =$$

$$\frac{1}{A^{2}} \left(\frac{1}{2} \sinh(2A) + A - 2 \sinh(A) \cosh(A) \right) =$$

$$\frac{1}{A^{2}} \left(A - \sinh(A) \cosh(A) \right) = \frac{1}{A} \left(1 - 2 \cosh(A) \right). \quad (7.9)$$

Numerics show that $A \approx 2.17732 \implies U \approx -3.64484$ (not required).