
1 Quiz 1

Problem 1.1 (1pt). Consider first order equations and determine if they
are linear homogeneous, linear inhomogeneous, quasilinear or non-linear (u
is an unknown function):

ut + xux = 0, (1.1)

ut + uux = 0. (1.2)

Answer. (7.1) Linear homogeneous, (7.2) Quasilinear

Problem 1.2 (2pt). Find the general solutions to the following equation:

uxxyy = sin(x) sin(y) (1.3)

Solution. Integrating by x, x, y and y:

uxxyy = sin(x) sin(y) =⇒ uxxy = − sin(x) cos(y) + φ′′(x) =⇒
uxx = − sin(x) sin(y) + φ′′(x)y + φ′′1(x) =⇒

ux = cos(x) sin(y) + φ′(x)y + φ′1(x) + ψ(y) =⇒
u = sin(x) sin(y) + φ(x)y + φ1(x) + ψ(y)x+ ψ1(y)

where φ, φ1, ψ, ψ1 are arbitrary functions.

Problem 1.3 (2pt). Find the solution of{
ux + 3uy = xy,

u|x=0 = 0.
(1.4)

Solution.

dx

1
=
dy

3
=

du

3xy
=⇒ y − 3x = C1 =⇒ du = x(3x+ C1)dx =⇒

u = x3 +
1

2
C1x

2 + C2

with C2 = φ(C1) with arbitrary function φ; so

u = x3 +
1

2
(y − 3x)x2 + φ(y − 3x) =

1

2
x2y − 1

2
x3 + φ(y − 3x)

is the general solution to equation. Plugging into initial condition we get
φ(y) = 0 and thus

u = x3 +
1

2
(y − 3x)x2 + φ(y − 3x) =

1

2
x2y − 1

2
x3

is the final answer.
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2 Quiz 2

Problem 2.1 (5pt). Solve IVP

utt − 4uxx = 0, (2.1)

u|t=0 = g(x), ut|t=0 = h(x) (2.2)

with

g(x) =


cos(x) |x| < π/2,

0 |x| ≥ π/2,

h(x) = 0. (2.3)

Solution. See figure; here (− ı
2
, π

2
) (on t = 0) is bold, characteristics passing

through its ends x− 2t = const and x+ 2t = const are teal and orange and
in the central diamond u = 1

2
cos(x+ 2t) + 1

2
cos(x− 2t) = cos(x) cos(2t).

x

t

u = 0u = 0

u = 0

u = 0

u = 1
2

cos(x− 2t)

u = 1
2

cos(x− 2t) u = 1
2

cos(x+ 2t)

u = 1
2

cos(x+ 2t)

u = cos(x) cos(2t)
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3 Quiz 3

Problem 3.1 (5pt). Find solution

utt − c2
1uxx = 0, t > 0, x > 0, (3.1)

utt − c2
2uxx = 0, t > 0, x < 0, (3.2)

u|t=0 = φ(x), ut|t=0 = c1φ
′(x) x > 0, (3.3)

u|t=0 = 0, ut|t=0 = 0, x < 0, (3.4)

u|x=+0 = αu|x=−0, ux|x=+0 = βux|x=−0 t > 0 (3.5)

(separately in x > c1t, 0 < x < c1t, −c2t < x < 0 and x < −c2t.

Solution. See figure. Observe that in {x > 0}, {x < −c2t} the general
solution is

u(x, t) = ϕ1(x+ c1t) + ψ1(x− c1t), (3.6)

u(x, t) = ϕ1(x+ c2t) + ψ1(x− c2t), (3.7)

due to (7.1), (7.2) respectively. Plugging (6.6) and (4.7) into (6.3) and (6.4)
respectively we get

ϕ1(x) + ψ1(x) = φ(x), c1ϕ1(x)− c1ψ1(x) = φ′(x), x > 0, (3.8)

ϕ2(x) + ψ2(x) = 0, c2ϕ2(x)− c2ψ2(x) = 0 x < 0. (3.9)

which (up to constants which do not affect u(x, t)) imply

ϕ1(x) = φ(x), ψ1(x) = 0, x > 0, (3.10)

ϕ2(x) = 0, ψ2(x) = 0 x < 0. (3.11)

which gives us u(x, t) = φ(x+ c1t) as x > c1t and u(x, t) = 0 as x1 < −c2t.
Now we are doing the most important thing: finding ψ1(x) as x < 0 and
ϕ2(x) as x > 0. From (7.5) as t > 0:

ϕ1(c1t) + ψ1(−c1t) = α
(
ϕ2(c2t) + ψ2(−c2t)

)
,

ϕ′1(c1t) + ψ′1(−c1t) = β
(
ϕ′2(c2t) + ψ′2(−c2t)

)
and plugging (4.11) and (4.12) we get

φ(c1t) + ψ1(−c1t) = αϕ2(c2t), (3.12)

c−1
1 φ(c1t)− c−1

1 ψ1(c1t) = βc−1
2 ϕ(c2t) (3.13)

where we already integrated φ′(c1t) + ψ′1(−c1t) = βϕ′2(c2t). Solving this
system we get

ψ1(−c1t) = K1φ(c1t), K1 = (αc−1
1 − βc−1

2 )/(αc−1
1 + βc−1

2 ),

ϕ2(c2t) = K2φ(c1t), K2 = 2c−1
1 /(αc−1

1 + βc−1
2 )

which implies what on the figure
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x

t

x
=
−
c
2 t

x =
c1
t

u(x, t) = φ(x+ c1t)u(x, t) = 0

u(
x,
t)

=
φ(
x+

c1
t)

+
K1
φ(
−x

+
c1
t)

u(x, t) =
K

2 φ(c
1 c −

12 x
+
c
1 t)

x

t

incoming waves

reflected wavesrefracted waves
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4 Quiz 4

Problem 4.1 (5pt). Oscillations of the beam are described by equation

utt +Kuxxxx = 0, 0 < x < l. (4.1)

with K > 0.
If both ends clamped (that means having the fixed positions and directions)
then the boundary conditions are

u(0, t) = ux(0, t) = 0, (4.2)

u(l, t) = ux(l, t) = 0. (4.3)

(a) Find equation describing frequencies and corresponding eigenfunctions
(You may assume that all eigenvalues are real and positive).

(d) Bonus [+1pt] Prove that eigenvalues are simple, i.e. all eigenfunctions
corresponding to the same eigenvalue are proportional.

Hint. Change coordinate system so that interval becomes [-L,L] with
L=l/2; consider separately even and odd eigenfunctions.

Solution. Separating variables u(x, t) = X(x)T (t) we arrive to

XIV = ω4X, (4.4)

X(−L) = X ′(−L) = 0, (4.5)

X(L) = X ′(L) = 0 (4.6)

and

T ′′ +Kω4T = 0 (4.7)

with ω > 0 (see Hint).

(a) Solving characteristic equation k4 = ω4 we get k1,2 = ±ω, k3,4 = ±iω
and

X = A cosh(ωx) +B sinh(ωx) + C cos(ωx) +D sin(ωx). (4.8)

Plugging into (7.5), (6.6) we get (dividing X ′(±L) by ω

A cosh(ωL) +B sinh(ωL) + C cos(ωL) +D sin(ωL) = 0, (4.9)

A sinh(ωL) +B cosh(ωL)− C sin(ωL) +D cos(ωL) = 0, (4.10)

A cosh(ωL)−B sinh(ωL) + C cos(ωL)−D sin(ωL) = 0, (4.11)

−A sinh(ωL) +B cosh(ωL) + C sin(ωL) +D cos(ωL) = 0 (4.12)

and immediately

A cosh(ωL) + C cos(ωL) = 0 (4.13)

A sinh(ωL)− C sin(ωL) = 0, (4.14)
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and

B sinh(ωL) +D sin(ωL) = 0, (4.15)

B cosh(ωL) +D cos(ωL) = 0 (4.16)

The first system has non-trivial solution iff its determinant is 0

cosh(ωL) sin(ωL) + cos(ωL) sinh(ωL) = 0 ⇐⇒ tanh(ωL) = − tan(ωL).
(4.17)

The second system has non-trivial solution iff its determinant is 0

cosh(ωL) sin(ωL)− cos(ωL) sinh(ωL) = 0 ⇐⇒ tanh(ωL) = tan(ωL).
(4.18)

so ω must satisfy either (4.17) or (4.18).

Then, in case (4.17) B = D = 0, and up to a constant factor C = 1,
A = − cos(ωL)/ cosh(ωL) and

X(x) = cos(ωx)− cosh(ωx) cos(ωL)

cosh(ωL)
. (4.19)

Similarly, in case (4.17)

X(x) = sin(ωx)− sinh(ωx) sin(ωL)

sinh(ωL)
. (4.20)

(d) (4.17) and (4.18) are not compatible. Indeed, if both hold then tanh(ωL) =
0 which contradicts to ωL > 0.

Also if (4.17) or (4.18) holds then the corresponding matrix has rank 1:
indeed cosh(ωL) 6= 0.

Therefore the space of solution is 1-dimensional.

Solution 2. Not following Hint. Still

X = A cosh(ωx) +B sinh(ωx) + C cos(ωx) +D sin(ωx). (4.21)

and as x = 0: A+ C = 0, B +D = 0 and

X = A
(
cosh(ωx)− cos(ωx)

)
+B

(
sinh(ωx)− sin(ωx)

)
. (4.22)

Then as x = l

A
(
cosh(ωl)− cos(ωl)

)
+B

(
sinh(ωl)− sin(ωl)

)
= 0,

A
(
sinh(ωl) + sin(ωl)

)
+B

(
cosh(ωl)− cos(ωl)

)
= 0
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where we divided X ′(l) by ω. Then it has non-trivial solution if its deter-
minant is 0:

(cosh(ωl)− cos(ωl)
)2 − (sinh(ωl) + sin(ωl)

)
(sinh(ωl)− sin(ωl)

)
= 0

which rewritten as

cosh2(ωl)− 2 cosh(ωl) cos(ωl) + cos2(ωl)− sinh2(ωl) + sin2(ωl) = 0

and since cosh2(t)− sinh2(t) = 1, cos2(t) + sin2(t) = 1 we get

cosh(ωl) cos(ωl) = 1 (4.23)

and taking B =
(
cosh(ωl) − cos(ωl)

)
, A = −

(
sinh(ωl) − sin(ωl)

)
(up to a

common factor) we get

X = −
(
sinh(ωl)− sin(ωl)

)(
cosh(ωx)− cos(ωx)

)
+(

cosh(ωl)− cos(ωl)
)(

sinh(ωx)− sin(ωx)
)
. (4.24)

It is the same solution as Solution 1: one can prove that

cosh(2ωL) cos(2ωL) = 1 ⇐⇒ tanh2(ωL) = tan2(ωL)

(remember, l = 2L), and X differ by a shift (by −L) and a factor.

5 Quiz 5

Problem 5.1 (5pts). As α > 0 find Fourier transforms of

(a) (2pts) e−|x|;

(b) (1.5pts) e−|x| sin(x);

(c) (1.5pts) xe−|x| sin(x).

Solution. (a) Fourier transform of e−|x|:

(2π)−1

∫ ∞
−∞

e−|x|−ikx dx = (2π)−1
(∫ 0

−∞
e(1−ik)x dx+

∫ ∞
0

e(−1−ik)x dx
)

=

(2π)−1
(

(1− ik)−1e(1−ik)x
∣∣∣x=0

x=−∞
+ (−1− ik)e(−1−ik)x

∣∣∣x=∞

x=0

)
=

(2π)−1
(

(1− ik)−1 − (−1− ik)−1
)

=
1

π(1 + k2)
. (5.1)

(b) Since sin(x) = 1
2i

(
eix − e−ix

)
and multiplication by eiβx of u means

k 7→ k − β for û, F.T. of e−|x| sin(x) is

1

2iπ

( 1

1 + (k − 1)2
− 1

1 + (k + 1)2

)
. (5.2)
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(c) Multiplication of u by x means i∂kû(k) resulting in

1

2π
∂k

( 1

1 + (k − 1)2
− 1

1 + (k + 1)2

)
=

− 1

2π

(
k − 1(

1 + (k − 1)2
)2 −

k + 1(
1 + (k + 1)2

)2

)
. (5.3)

6 Quiz 6

Problem 6.1 (5pt). Solve

∆u := uxx + uyy = 0 in r < a

u|r=a = f(θ).

where we use polar coordinates (r, θ) and f(θ) =

{
1 0 < θ < π

−1 π < θ < 2π.

Hint. Use Fourier method rather than Poisson formula.

Solution. Setting u(r, θ) = R(r)Θ(θ) we after separation of variables arrive
to

r2R′′ + rR′

R
+

Θ′′

Θ
= 0

and since the first term depends on r only, and the second term on θ only we
conclude that both are constant; also Θ must be 2π-periodic and therefore

Θ′′ + λΘ = 0, Θ(θ + 2π) = Θ(θ); (6.1)

then λ0 = 0, Θ0 = 1
2

and λn = π2n2, Θn,1 = cos(nθ), Θn,2 = sin(nθ) for
n = 1, 2, . . ..
Then

r2R′′ + rR′ + n2R = 0. (6.2)

This is Euler equation and its solutions are R0 = A0 +B0 ln r,
Rn,i = An,ir

n +Bn,ir
−n or n = 1, 2, . . ..

We remove terms with ln r and r−n since they are singular at the origin and
finally

u(r, θ) =
1

2
A0 +

∞∑
n=1

(
An cos(nθ) +Bn sin(nθ)

)
rn. (6.3)

Plugging into Dirichlet boundary condition we get

f(θ) =
1

2
A0 +

∞∑
n=1

(
An cos(nθ) +Bn sin(nθ)

)
an. (6.4)
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Then

An =
1

πan

∫ π

−π
f(θ) cos(nθ) dθ n = 0, 1, 2, . . .

Bn =
1

πan

∫ π

−π
f(θ) sin(nθ) dθ n = 1, 2, . . .

Since f(θ) is an odd function An = 0 and

Bn =
2

πan

∫ π

0

f(θ) sin(nθ) dθ n = 1, 2, . . . (6.5)

Note No punishment for using all these formulate without deduction.
Then

Bn =
2

πan

∫ π

0

sin(nθ) dθ = − 2

nπa2
cos(nθ)

∣∣θ=π
θ=0

=
0 n = 2m,

4

(2m+ 1)πa2
n = 2m+ 1.

(6.6)

Finally

u(r, θ) =
∞∑
m=0

4

(2m+ 1)πa2
sin(2m+ 1)θ.

7 Quiz 7

Problem 7.1. The heavy flexible but unstretchable wire (chain) has a
length and an energy respectively

` =

∫ 1

−1

√
1 + u′ 2 dx, (7.1)

U = ρg

∫ 1

−1

u
√

1 + u′ 2 dx (7.2)

where ρ is a linear density.

(a) Write down an equation minimizing energy U as length ` = 4 is fixed.

(b) Find solution satisfying u(−1) = u(1) = 0.

(c) (bonus) Calculate U .

Hint Since Lagrangian L does not depend on x explicitly, Euler-Lagrange
equation is equivalent to H := u′Lu′ − L = const.
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Solution. (a) Euler-Lagrange functional is∫ 1

−1

(u− λ)
√

1 + u′ 2 dx (7.3)

with Lagrangian

L = (u− λ)
√

1 + u′ 2. (7.4)

Constant factor ρg does not matter here. Then equation is

√
1 + u′ 2 −

((u− λ)u′√
1 + u′ 2

)′
= 0. (7.5)

(b) Simpler to use Hint than to solve equation. Then

H = − (u− λ)√
1 + u′ 2

= const =⇒

√
1 + u′2 = A(y − λ) =⇒ du

A2(u− λ)2 − 1
= dx (7.6)

and integration gives the answer

u =
1

A
cosh(A(x−B)) + λ. (7.7)

We have three parameters and three equations. u(−1) = u(1) = 0 =⇒
B = 0, λ = − 1

A
cosh(A). So,

u =
1

A
cosh(Ax)− 1

A
cosh(A) (7.8)

where A is a root of∫ 1

−1

√
1 + u′ 2 dx =

∫ 1

−1

cosh(Ax) dx =
2

A
sinh(A) = `

i.e. sinh(A) = 2A.

(c) Assuming for simplicity ρg = 1

U =

∫ 1

−1

∫ 1

−1

u
√

1 + u′ 2 =
1

A

∫ 1

−1

(
cosh(Ax)− cosh(A)

)
cosh(Ax) =

1

A

∫ 1

−1

(1

2
cosh(2Ax) +

1

2
− cosh(Ax) cosh(A)

)
dx =

1

A2

(1

2
sinh(2A) + A− 2 sinh(A) cosh(A)

)
=

1

A2

(
A− sinh(A) cosh(A)

)
=

1

A

(
1− 2 cosh(A)

)
. (7.9)

Numerics show that A ≈ 2.17732 =⇒ U ≈ −3.64484 (not required).
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