Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.


Topics - Victor Ivrii

Pages: [1] 2 3 ... 30
1
APM346--Announcements / FE and FM
« on: December 20, 2016, 06:14:23 AM »
Final Exam:
Count   53
Minimum Value   17.33
Maximum Value   40.00
Range   22.67
Average   27.37
Median   28.00
Standard Deviation   6.15


This is what I submitted

2
FE / FE7
« on: December 13, 2016, 08:01:10 PM »
Solve using (partial) Fourier transform with respect to $y$
\begin{align}
&\Delta u:=u_{xx}+u_{yy}=0, &&x>0,\label{7-1}\\
&u|_{x=0}= g(y),\label{7-2}\\
&\max |u|<\infty\label{7-3}
\end{align}
with $g(y)=\frac{2}{y^2+1}$.

Hint. Fourier transform of $g(y)$ is $\hat{g}=e^{-|\eta|}$.

3
FE / FE6
« on: December 13, 2016, 08:00:15 PM »
Solve as $t>0$
\begin{align}
&u_{tt}-\Delta u  =0, \label{6-1}
\end{align}
with initial conditions
\begin{align}
&u(x,y,z,0)=\left\{\begin{aligned} &1\quad &&r:=\sqrt{x^2+y^2+z^2}<1,\\
&0 &&r\ge 1,\end{aligned}\right.\qquad u_t(x,y,z,0)=0\label{6-2}
\end{align}
and solve by a separation of variables.

Hint. Use spherical coordinates, observe that solution must be spherically symmetric: $u=u(r,t)$ (explain why).
Also, use equality
\begin{equation}
r  u_{rr}+2 u_r= (r u)_{rr}.
\label{6-3}
\end{equation}

4
FE / FE5
« on: December 13, 2016, 07:58:11 PM »
Consider Laplace equation in the half-strip
\begin{align}
&u_{xx} +u_{yy}=0 \qquad  y>0, \ 0 < x< \pi \label{5-1}
\end{align}
with the boundary conditions
\begin{align}
&u  (0,y)=u(\pi, y)=0,\label{5-2}\\
&u_y(x,0)=g(x)\label{5-3}
\end{align}
with $g(x)=\cos(x)$    and condition $\max |u|<\infty$.


  • Write the associated eigenvalue problem.
  • Find all  eigenvalues and corresponding eigenfunctions.
  • Write the solution in the form of  a series expansion.


5
FE / FE4
« on: December 13, 2016, 07:55:55 PM »
Consider the Laplace equation in the sector
\begin{align}
&u_{xx} +  u_{yy} =0\qquad &&\text{in  } x^2+y^2 < 16, x> -\sqrt{3}|y|  ,
\label{4-1}
\end{align}
with the boundary conditions
\begin{align}
& u =1\qquad &&\text{for  }  x^2+y^2=16,\label{4-2}\\
& u=0 &&\text{for  }  x=-\sqrt{3}|y| .\label{4-3}
\end{align}
 

  • Look for solutions $u$ in the form of  $u(r,\theta)= R(r) P(\theta)$  (in polar coordinates) and derive a set of  ordinary differential equations for $R$ and $P$. Write the correct  boundary conditions for $P$.
  • Solve the eigenvalue problem for $P$ and find all eigenvalues.
  • Solve the differential equation  for $R$.
  • Find the solution $u$ of (\ref{4-1})--(\ref{4-3}).



6
FE / FE3
« on: December 13, 2016, 07:51:04 PM »
Solve by the method of separation of variables
\begin{align}
&4 u_{tt}-  u_{xx}=0,\qquad 0<x<2, \; t>0,\label{3-1}\\[2pt]
& u (0,t)= u (2,t)=0,\label{3-2}\\[2pt]
& u(x,0)=f(x),\label{3-3}\\[2pt]
& u_t(x,0)=g(x)\label{3-4}\end{align}
with $f(x)=\left\{\begin{aligned}  &x &&0<x<1,\\ &2-x &&1<x<2,\end{aligned}\right.$    and  $g(x)=0$.  Write the answer in terms of  Fourier series.

7
FE / FE2
« on: December 13, 2016, 07:50:03 PM »
$\newcommand{\erf}{\operatorname{erf}}$
Solve  IVP for the heat equation
\begin{align}
&4u_t -  u_{xx}=0,\qquad &&0 <x<\infty,\; t>0,\label{2-1}\\[2pt]
&u|_{x=0}=0,\\
&u|_{t=0}= f(x)\label{2-2}
\end{align}
with $f(x)=xe^{-x^2}$.

Solution should be expressed  through $\displaystyle{\erf(z)=\frac{2}{\sqrt{\pi}} \int_0^z e^{-z^2}\,dz}$.

8
FE / FE1
« on: December 13, 2016, 07:49:01 PM »
Solve by the method of characteristics the BVP for a wave equation
\begin{align}
&u_{tt}-  9 u_{xx}=0,\qquad 0<x<\infty , \; t>0\label{1-1}\\[2pt]
& u(x,0)=f(x),\label{1-2}\\[2pt]
& u_t(x,0)=g(x),\label{1-3}\\[2pt]
& u_x (0,t)= h(t)\label{1-4}
\end{align}
with $f(x)=4\cos(x)$,    $g(x)=6\sin (x) $ and  $h(t)=\sin (3t)$. You need to find a continuous solution.

9
APM346--Announcements / Term Mark Calculated
« on: December 01, 2016, 04:43:29 AM »
Term=Q+Test1+Test2 Remind: possible points = 60

STATISTICS
Count56
Minimum Value8.00
Maximum Value63.00
Range55.00
Average44.09
Median45.00
Standard Deviation11.82
====================
 GRADE DISTRIBUTION
 
Greater than 1004
90 - 10010
80 - 8910
70 - 7910
60 - 697
50 - 598
40 - 495
30 - 391
20 - 290
10 - 191

10
APM346--Announcements / Term Test 2 graded
« on: November 28, 2016, 08:36:58 AM »
UPDATED

Count53
Minimum Value7.00
Maximum Value21.00
Range14.00
Average15.14
Median16.00
Standard Deviation3.95

GRADE DISTRIBUTION
Greater than 1002
90 - 10014
80 - 8912
70 - 794
60 - 698
50 - 597
40 - 494
30 - 392

=================

Cumulative (in % to 60 )

STATISTICS
Count56
Minimum Value20.00
Maximum Value105.00
Range85.00
Average74.17
Median77.50
Standard Deviation19.22

-----------
GRADE DISTRIBUTION
Greater than 1004
90 - 1008
80 - 8914
70 - 799
60 - 697
50 - 598
40 - 493
30 - 392
20 - 291

11
TT2 / TT2-P5
« on: November 17, 2016, 03:28:26 AM »
Find Fourier transforms of the  functions
\begin{equation}
f_\pm (x)= e^{-\varepsilon |x|}\theta(\pm x)
\end{equation}
and write these function as a Fourier integrals, where $\theta$ is a Heaviside function: $\theta(t)=1$ for $t>0$ and $\theta(t)=0$ for $t<0$.

Bonus (1pt).
Write Fourier transforms of the  functions $g(x)=f_+(x)+ f_-(x)$ and $h(x)= f_+(x)- f_-(x)$.

12
TT2 / TT2-P4
« on: November 17, 2016, 03:27:07 AM »
Consider Laplace equation in the sector
\begin{equation}
u_{rr} +\frac{1}{r}u_r +\frac{1}{r^2}u_{\theta\theta}=0 \qquad  r<8,\,0<\theta<\frac{3}{2}\pi \label{4-1}
\end{equation}
with the Dirichlet boundary conditions as $\theta=0$ and $\theta=\frac{3}{2}\pi$
\begin{equation}
u|_{\theta=0}=u|_{\theta=\frac{3}{2}\pi}=0\label{4-2}\\
\end{equation}
and the Dirichlet boundary condition as $r=8$
\begin{equation}
u|_{r=8}=1.\label{4-3}
\end{equation}
Using separation of variables find solution as a series.

13
TT2 / TT2-P3
« on: November 17, 2016, 03:25:28 AM »
Using Fourier method find eigenvalues and eigenfunctions of Laplacian in the rectangle $\{0<x<a,\, 0<y<b\}$ with Neumann boundary conditions:
\begin{align}
&u_{xx}+u_{yy}=-\lambda u\qquad 0<x<a,\ 0<y<b,\label{3-1}\\[3pt]
&u_x|_{x=0}=u_x|_{x=a}=u_y|_{y=0}=u_y|_{y=b}=0.\label{3-2}
\end{align}

14
TT2 / TT2-P2
« on: November 17, 2016, 03:24:00 AM »
Solve
\begin{align}
&u_{xx}+u_{yy}=0\qquad &-\infty<x<\infty, \ 0<y<\infty,\label{2-1}\\
&u|_{y=0}=g(x)=\left\{\begin{aligned} &1 &&|x|<1,\\ &0 &&|x|>1,\end{aligned}\right.\label{2-2}\\
&\max|u|<\infty. \label{2-3}\end{align}

Hint: Use partial Fourier transform with respect to $x$. Write solution as a Fourier integral without calculating it.

15
TT2 / TT2-P1
« on: November 17, 2016, 03:22:16 AM »
Solve by Fourier method
\begin{align}
& u_{tt}-u_{xx}=0\qquad 0<x<\pi,\label{1-1}\\
& u|_{x=0}=-u|_{x=\pi},\qquad u_x|_{x=0}=-u_x|_{x=\pi},\label{1-2}\\
&u| _{t=0}=1,\qquad u_t|_{t=0}=0.\label{1-3}
\end{align}

Hint: $\lambda_n\ge 0$. Also remember how solution looks like in the case of double eigenvalues.

Pages: [1] 2 3 ... 30