Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.


Topics - Victor Ivrii

Pages: 1 ... 29 30 [31] 32 33 ... 47
454
Quiz 4 / MOVED: Quiz 4 Solution
« on: November 01, 2015, 07:34:37 AM »

457
Test 1 / TT1-P5
« on: October 21, 2015, 08:52:22 PM »
$\newcommand{\erf}{\operatorname{erf}}$
Find  solution $u(x,t)$ to
\begin{align}
&u_t=u_{xx} && -\infty<x<\infty, \ t>0,\label{eq-5-1}\\[4pt]
&u|_{t=0}=\left\{\begin{aligned}
&x\qquad && |x|<1,\\[2pt]
&0      && |x|>1
\end{aligned}\right.,\\[4pt]
&\max |u|<\infty.
\end{align}
Calculate integral.


Hint:
For $u_t=ku_{xx}$ use $\displaystyle{G(x,t)=\frac{1}{\sqrt{4\pi kt}}\exp (- (x-y)^2/4kt)}$.
To calculate integral make change of variables and use $\displaystyle{\erf(z)=\frac{2}{\sqrt{\pi}}\int_0^z e^{-z^2}\,dz}$.

458
Test 1 / TT1-P4
« on: October 21, 2015, 08:50:32 PM »
Consider the PDE  with boundary conditions:
\begin{align}
&u_{tt}-c^2u_{xx} + \omega^2 u =0,\qquad&&0<x<L,\label{eq-4-1}\\[2pt]
&(u_x -\alpha u)|_{x=0}=0,\label{eq-4-2}\\[2pt]
&(u_x +\beta u)|_{x=L}=0\label{eq-4-3}
\end{align}
where  $c>0$ and $\omega>0$ areconstant. Prove that the energy $E(t)$ defined as
\begin{equation}
E(t)= \frac{1}{2}\int_0^L \bigl( u_t^2 + c^2u_{x}^2 + \omega^2 u^2)\,dx +\frac{c^2\alpha}{2}u(0,t)^2+
\frac{c^2\beta}{2}u(L,t)^2
\end{equation}
does not depend on $t$.

459
Test 1 / TT1-P3
« on: October 21, 2015, 08:49:38 PM »
Find  solution to
\begin{align}
&u_{tt}-4u_{xx}=0, && t>0, \ x>0,\label{eq-3-1}\\[2pt]
&u|_{t=0}=e^{-x}, && x>0,\label{eq-3-2}\\[2pt]
&u_t|_{t=0}=6e^{-x}, && x>0,\label{eq-3-3}\\[2pt]
&u|_{x=0}= e^{-2t}, &&t>0.\label{eq-3-4}
\end{align}

460
Test 1 / TT1-P2
« on: October 21, 2015, 08:48:29 PM »
(a) Find solution $u(x,t)$ to
\begin{align}
&u_{tt}-u_{xx}= \frac{x}{(x^2+1)^2},\\
&u|_{t=0}=u_t|_{t=0}=0.
\end{align}

(b) Find $\lim _{t\to +\infty} u(x,t)$.

461
Test 1 / TT1-P1
« on: October 21, 2015, 08:47:17 PM »
Consider the first order equation:
\begin{equation}
(t^2+1)u_t +  u_x = u.
\label{eq-1-1} 
\end{equation}

(a) Find the characteristic curves and sketch them in the $(x,t)$ plane.

(b)  Write the general solution.

(c) Solve  equation (\ref{eq-1-1})  with the initial condition $u(x,0)= \cos(x)$. Explain why the solution is fully  determined by the initial condition.

462
Quiz 3 / MOVED: Quiz 3 Answers
« on: October 17, 2015, 05:24:01 AM »

464
HA4 / HA4-P5
« on: October 10, 2015, 07:24:51 AM »

465
HA4 / HA4-P4
« on: October 10, 2015, 07:24:25 AM »

Pages: 1 ... 29 30 [31] 32 33 ... 47