Author Topic: HA3 problem 2  (Read 787 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 1332
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
HA3 problem 2
« on: February 05, 2015, 07:27:12 PM »
Consider heat equation with a convection term
\begin{equation}
u_t+\underbracket{v u_x}_{\text{convection term}} =ku_{xx}.
\label{eq-HA3.4}
\end{equation}

a.  Using change of variables $u(x,t)=U(x-vt,t)$ reduce it to ordinary heat equation and using (1)-(2) of http://www.math.toronto.edu/courses/apm346h1/20151/HA3.html for a latter write a formula for solution $u (x,t)$.
b.  Can we use the method of continuation to solve IBVP with Dirichlet or Neumann boundary condition at $x>0$ for (\ref{eq-HA3.4}) on $\{x>0,t>0\}$? Justify your answer.

Yang Liu

  • Newbie
  • *
  • Posts: 4
  • Karma: 0
    • View Profile
Re: HA3 problem 2
« Reply #1 on: February 06, 2015, 02:35:06 AM »
Attached ;D

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 1332
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Re: HA3 problem 2
« Reply #2 on: February 08, 2015, 05:47:12 AM »
a Idea correct but it will be $(x-vt)$ rather than $(x+vt)$