Author Topic: TT1 Problem 4  (Read 1171 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 1332
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
TT1 Problem 4
« on: February 12, 2015, 07:27:47 PM »
Check that function $u=x^3+6xt$ satisfies diffusion equation $u_t-u_{xx}=0$ and find
\begin{align*}
&M(T)= \max _{0\le x\le L,\ 0\le t\le T} u(x,t),\\[2pt]
&m(T)= \min _{0\le x\le L,\  0\le t\le T} u(x,t).
\end{align*}

a. Where is the maximum value  $u(x,t)=M(T,L)$  achieved?
b. Where is the minimum  value $u(x,t)=m(T,L)$ achieved?
c.  Verify the  maximum and minimum principle.

Ping Wei

  • Jr. Member
  • **
  • Posts: 7
  • Karma: 0
    • View Profile
Re: TT1 Problem 4
« Reply #1 on: February 12, 2015, 10:00:21 PM »
a), u(L,T) is maximum value
b), u(0,0) is minimum value

Ping Wei

  • Jr. Member
  • **
  • Posts: 7
  • Karma: 0
    • View Profile
Re: TT1 Problem 4
« Reply #2 on: February 12, 2015, 10:02:14 PM »
Ut= 6x , Ux= 2x^2+6t, Uxx= 6x  so Ut - Uxx = 6x -6x =0

Yiyun Liu

  • Full Member
  • ***
  • Posts: 15
  • Karma: 0
    • View Profile
Re: TT1 Problem 4
« Reply #3 on: February 12, 2015, 11:28:26 PM »
c)
as the principle of maximum and minimum stated that the max and min must occur either on the bottom t=0 or the sides edges at x=0,L including the corners (0,T),(L,T) for some T∈t>0, obviously,  M(T) and m(t) satisfies the maximum and minimum principals.

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 1332
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Re: TT1 Problem 4
« Reply #4 on: February 14, 2015, 06:04:44 AM »
I am waiting for a), b)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 1332
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Re: TT1 Problem 4
« Reply #5 on: February 18, 2015, 08:19:20 AM »
I am really glad that I decided to grade TT1 by myself (well, I was forced because TA has insufficient number of hours). I see by myself shortcoming of my choice of problems and of your knowledge.

Where maximum or minimum of $u(x,t)$ could be achieved? Second year calculus tells us that it could be

  • In inner points of rectangle, $u_x=u_t=0$—there are no such points
  • On the boundary $x=0$ or $x=L$ where $u_t=0$. We get $x=0$ and $0\le t\le T$––the whole left border. lost to majority who indicated only $(0,0)$; or on the boundary $t=0$ or $T=L$ where $u_x=0$
  • In the four corner points $(0,0)$ (which is covered by what we found), $(0,T)$ (which is alsocovered by what we found), $(L,0)$ and $(L,T)$
So
a) Minimum is $0$ and it is achieved at $\{x=0, 0\le t\le T\}$
b) Maximum is $L^3+6LT$ and it is achieved at $(L,T)$.

Important: both maximum and minimum are achieved on the lateral boundary or the bottom, but neither inside nor on the upper lead (excluding its borders).
« Last Edit: February 18, 2015, 10:23:57 AM by Victor Ivrii »