### Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.

### Messages - Yifei Wang

Pages: [1]
1
##### Final Exam / Re: FE-P2
« on: December 18, 2018, 02:31:18 PM »
let $z = {re^{i\theta}}$
$f(Z) = f({re^{i\theta}}) = \frac{1}{2}({re^{i\theta}}+\frac{1}{r}{re^{-i\theta}})$
= $\frac{1}{2}{re^{i\theta}} + \frac{1}{2r}{re^{-i\theta}})$
= $\frac{r}{2}({cos\theta}+i{sin\theta})$ + $\frac{1}{2r}({cos(-\theta)}+i{sin(-\theta)})$

By odd and even function

= $(\frac{1}{2r}+\frac{r}{2}){cos\theta}$ +${isin\theta}(\frac{1}{2r}+\frac{r}{2})$
= $\frac{1+r^2}{2r}{cos\theta}$ + $i\frac{r^2-1}{2r}{sin\theta}$ = $U+iV$
${cos\theta} = \frac{U}{\frac{1+r^2}{2r}}$
${sin\theta} = \frac{U}{\frac{r^2-1}{2r}}$

for a:
$\frac{U}{\frac{1+r^2}{2r}}^2$ + $\frac{U}{\frac{r^2-1}{2r}}^2 = 1$
${\frac{1+r^2}{2r}}^2 - {\frac{r^2-1}{2r}}^2 = 1$
$a^2 = {\frac{1+r^2}{2r}}^2$
$b^2 ={\frac{r^2-1}{2r}}^2$

$---------------------------$
for b:
Similar to part a

= $\frac{1+r^2}{2r}{cos\theta}$ + $i\frac{r^2-1}{2r}{sin\theta}$ = $U+iV$
${\frac{1+r^2}{2r}} = \frac{U}{cos\theta}$
${\frac{r^2-1}{2r}} = \frac{V}{sin\theta}$

$\frac{U}{cos\theta}^2 - \frac{V}{sin\theta}^2 = 1$
$a^2 = {cos\theta}^2$
$b^2 = {sin\theta}^2$
$a^2 + b^2 = 1$

2
##### Final Exam / Re: FE-P6
« on: December 18, 2018, 01:21:42 PM »
sorry for reposting, the loading for edit seems like taking forever.

$\int_{0}^{\infty} \frac{1}{1+z^n} dz$ = $2 \pi i$ $\sum_{i=1}^{n} Res(f,z_i)$

$z^n = -1 = e^i\pi$

$z = e^{i(\frac{1}{n}+\frac{2k}{n})\pi}$

we can decompose the integral into three parts, where $C_1$ is the straight line on the x-axis, $C_R$ is the curve with radius R and $C_2$ being the line on the second quadrant

$\int_{C}$  = $\int_{C_1}$  + $\int_{C_R}$  + $\int_{C_2}$

for $C_R$:
let x = z $dx = dz$
$\int_{C_R}$ = $\int_{0}^{R} \frac{1}{1+z^n} dz$
as $\lim_{R\to\infty}$ = $\int_{0}^{\infty} \frac{1}{1+z^n} dz$
= $2 \pi R *\frac{\alpha}{2 \pi}* \mid \frac{1}{1+z^n} \mid_{Max}$
= $\alpha R \mid \frac{1}{1+z^n} \mid_{Max}$
$\leq \alpha R \mid \frac{1}{1+R^n} \mid$
$\leq \alpha R \mid \frac{1}{R^n} \mid$
as $\lim_{R\to\infty}$
$\leq \alpha R \mid \frac{1}{R^n} \mid$ = 0
$\int_{0}^{R} \frac{1}{1+z^n} dz = 0$

$----------------------------------------------------$
for $C_1$:
let $x = t e^{i\theta}, dx = e^{i\theta}dt$ $t \in [0,R]$ and $\theta$ be the angle between the line and x-axis
$\int_{C_1}$ = $\int_{0}^{R} \frac{1}{1+x^n} dz$
as $\lim_{R\to\infty}$ = $\int_{0}^{\infty} \frac{1}{1+x^n} dx$
= $\int_{0}^{\infty} \frac{e^{i\theta}}{1+{t e^{i\theta}}^n} dt$
= $\int_{0}^{\infty} \frac{e^{i\theta}}{1+t^n e^{ni\theta}}dt$
Since $\theta$ = 0
= $\int_{0}^{\infty} \frac{1dt}{1+t^n}$ = $I$
= $I$

$-------------------------------------------------------$
for $C_2$:
let $x = t e^{i\alpha}, dx = e^{i\alpha}dt$ $t \in [R,0]$
$\int_{C_1}$ = $\int_{R}^{0} \frac{1}{1+x^n} dz$
as $\lim_{R\to\infty}$ = $\int_{\infty}^{0} \frac{1}{1+x^n} dz$
=$\int_{\infty}^{0} \frac{e^{i\alpha}}{1+{te^{i\alpha}}^n} dt$
=$\int_{\infty}^{0} \frac{e^{i\alpha}}{1+{t^ne^{i\alpha n}}} dt$
= -$e^{i\alpha}\int_{0}^{\infty} \frac{1}{1+{t^ne^{i\alpha n}}} dt$
= -$e^{i\alpha}I$

$\int_{C}$ = $I$ -$e^{i\alpha}I$
= $1-e^{i\alpha}$I
=$e^{i(\frac{1}{n}+\frac{2k}{n})\pi}$
$I = \frac{e^{i(\frac{1}{n}+\frac{2k}{n})\pi}}{1-e^{i\alpha}}$

since we are in the principal branch, we let K = 0 Then you do not need $k$ at all anywhere

$I = \frac{e^{i(\frac{1}{n})\pi}}{1-e^{i\alpha}}$

3
##### Final Exam / Re: FE-P3
« on: December 18, 2018, 12:55:26 PM »
let $w = \frac{1}{z}$ then $Z = \frac{1}{w}$
${Z\to\infty}$ ${w\to0}$

$f(z) = f(\frac{1}{w}) = \frac{sin{\frac{1}{w}}}{cos\frac{1}{w}}+\frac{1}{w}\frac{cos^2{\frac{1}{w}}}{sin^2{\frac{1}{w}}}$

at ${w\to0}$, we have a non-isolated singularity

4
##### Final Exam / Re: FE-P6
« on: December 18, 2018, 12:16:13 PM »
$\int_{0}^{\infty} \frac{1}{1+z^n} dz= 2 \pi i \sum_{i=1}^{K} Res(f,z_i)$

$z^n = -1 = e^{i\pi}$

$z = e^{i(\frac{1}{n}+\frac{2k}{n})\pi}$

we can decompose the integral into three parts, where $C_1$ is the straight line on x-axis, $C_R$ is the curve with radius R and $C_2$ being the line on the second quadrant

$\int_{C}$  = $\int_{C_1}$  + $\int_{C_R}$  + $\int_{C_2}$

for $C_R$:
let x = z $dx = dz$
$\int_{C_R}$ = $\int_{0}^{R} \frac{1}{1+z^n} dz$
as $\lim_{R\to\infty}$ = $\int_{0}^{\infty} \frac{1}{1+z^n} dz$
= $2 \pi R *\frac{\alpha}{2 \pi}* \mid \frac{1}{1+z^n} \mid_{Max}$
= $\alpha R \mid \frac{1}{1+z^n} \mid_{Max}$
$\leq \alpha R \mid \frac{1}{1+R^n} \mid$
$\leq \alpha R \mid \frac{1}{R^n} \mid$
as $\lim_{R\to\infty}$
$\leq \alpha R \mid \frac{1}{R^n} \mid$ = 0
$\int_{0}^{R} \frac{1}{1+z^n} dz = 0$

for $C_1$:
let $x = t e^{i\theta}, dx = e^{i\theta}dt$ $t \in [0,R]$ and $\theta$ be the angle between the line and x-axis
$\int_{C_1}$ = $\int_{0}^{R} \frac{1}{1+x^n} dz$
as $\lim_{R\to\infty}$ = $\int_{0}^{\infty} \frac{1}{1+x^n} dx$
= $\int_{0}^{\infty} \frac{e^{i\theta}}{1+{t e^{i\theta}}^n} dt$
= $\int_{0}^{\infty} \frac{e^{i\theta}}{1+t^n e^{ni\theta}}dt$
Since $\theta$ = 0
= $\int_{0}^{\infty} \frac{1dt}{1+t^n}$ = $I$
= $I$

for $C_2$:
let $x = t e^{i\alpha}, dx = e^{i\alpha}dt$ $t \in [R,0]$
$\int_{C_1}$ = $\int_{R}^{0} \frac{1}{1+x^n} dz$
as $\lim_{R\to\infty}$ = $\int_{\infty}^{0} \frac{1}{1+x^n} dz$
=$\int_{\infty}^{0} \frac{e^{i\alpha}}{1+{te^{i\alpha}}^n} dt$
=$\int_{\infty}^{0} \frac{e^{i\alpha}}{1+{t^ne^{i\alpha n}}} dt$
= -$e^{i\alpha}\int_{0}^{\infty} \frac{1}{1+{t^ne^{i\alpha n}}} dt$
= -$e^{i\alpha}I$

$\int_{C}$ = $I$ -$e^{i\alpha}I$
= $1-e^{i\alpha}$I
=$e^{i(\frac{1}{n}+\frac{2k}{n})\pi}$
$I = \frac{e^{i(\frac{1}{n}+\frac{2k}{n})\pi}}{1-e^{i\alpha}}$

5
##### Term Test 2 / Re: TT2A Problem 1
« on: November 25, 2018, 02:38:21 PM »
Thank you for the correction!

6
##### Term Test 2 / Re: TT2 Problem 2
« on: November 24, 2018, 05:38:47 AM »
I think the power is -1/2 inside of the -1

Correct V.I.  It was actually Test2B

7
##### Term Test 2 / Re: TT2A Problem 1
« on: November 24, 2018, 05:36:15 AM »

ZhenDi Pan

I think you are missing the $z$ on the numerator.

8
##### Term Test 2 / Re: TT2A Problem 1
« on: November 24, 2018, 05:34:25 AM »
We can rewrite the fraction as:

$let f(z) =\frac{z}{z^2-4z+5}$

as

$\frac{z}{(z-(2+i))(z-(2-i))}$

a. When $2+i$ is inside
$f(z) = \int \frac{\frac{z}{z-2+i}}{z-2-i}~dz$

By Cauchy's thm

$f(z) = \int \frac{\frac{z}{z-2+i}}{z-2-i}~dz= 2i\pi *f(2+i) = \pi * (2+i)$

b. When $2-i$ is inside

$f(z) = \int \frac{\frac{z}{z-2-i}}{z-2+i}~dz$

By Cauchy's thm

$f(z) = \int \frac{\frac{z}{z-2-i}}{z-2+i}~dz= 2i\pi *f(2-i) = -\pi * (2-i)$

c. When both points are inside

$f(z) = \int \frac{z}{(z-(2+i))(z-(2-i))}~dz = 2i\pi (Res(f, 2+i) + Res(f, 2-i)) = 2\pi i$

9
##### MAT334--Lectures & Home Assignments / 2.6 Q11
« on: November 19, 2018, 08:53:14 PM »
Can someone help me with this question.

10
##### Quiz-3 / Re: Q3 TUT 0301
« on: October 15, 2018, 10:39:25 PM »
I have a different approach to this question (without using the hint).

Let W as cos(x)cosh(y)-isin(x)sinh(y)
When X = 0:
sin(x) = 0, cos(x) = 1
W = cosh(y)

When X = pi
sin(x) = 0, cos(x) = -1
W =- cosh(y)

As we know cosh(y) in [1, limits) , and sin(x) in [1, -1].
Therefore, we can conclude y in (-limits, limits) and x in [-1, 1]

Pages: [1]