Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.

Messages - Yunfei Xia

Pages: [1]
MAT334--Lectures & Home Assignments / Re: 2.5 Q19
« on: November 18, 2018, 08:02:05 AM »
Follow the hint: let $r$ be the circle $|z-z_0|=s,0<s<r$. For any $m\in z$.
0&=\frac{1}{2\pi i} \int_r(z-z_0)^{-m}\left(\sum\limits_{-\infty}^{+\infty}a_n(z-z_0)^n\right)\text{d}z\\
&\quad z=z_0+se^{i\theta},\quad
&\quad \text{d}z=sie^{i\theta}\text{d}\theta\\
&=\frac{1}{2\pi }\int\nolimits_{0}^{+2 \pi}\left(se^{i\theta}\right)^{-m}\left(\sum\limits_{-\infty}^{+\infty}{a_n}\left(se^{i\theta}\right)^n\right)se^{i\theta}\text{d}\theta\\
&=\sum\limits_{-\infty}^{+\infty}{a_n}s^{-m}s^{n+1}\frac{1}{2\pi }\int e^{-im \theta+i \theta+in}\text{d}\theta\\
&=\sum\limits_{-\infty}^{+\infty}{a_n}s^{-m}s^{n+1}\frac{1}{2\pi} \int e^{i \theta(n+1-m)}\text{d}\theta\\

MAT334--Lectures & Home Assignments / 2.5 Q11
« on: November 17, 2018, 10:15:47 PM »
I am so confused about this question
$\frac{az+b}{cz+d}$, $z_0=-\frac{d}{c}$, $(c\neq0)$

Pages: [1]