Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.


Messages - Victor Ivrii

Pages: 1 ... 150 151 [152]
2266
Technical Questions / Re: Testing Math
« on: September 21, 2012, 02:55:35 AM »
This is just a test to see whether I can copy and paste from LyX:

u(x, t) = \varphi(x-ct)+\phi(x+ct)-\intop_{x-ct}^{x+ct}g(y)dy

Yes, you can but need to switch on math (inline or display respectively)

Code: [Select]
$u(x, t) = \varphi(x-ct)+\phi(x+ct)-\intop_{x-ct}^{x+ct}g(y)dy$$u(x, t) = \varphi(x-ct)+\phi(x+ct)-\intop_{x-ct}^{x+ct}g(y)dy$

Code: [Select]
$$u(x, t) = \varphi(x-ct)+\phi(x+ct)-\intop_{x-ct}^{x+ct}g(y)dy$$$$u(x, t) = \varphi(x-ct)+\phi(x+ct)-\intop_{x-ct}^{x+ct}g(y)dy$$

Actually I never saw \intop (just \int) and double dollars are deprecated (see my code), but your example works

2267
Home Assignment 1 / Re: Problem 4 [corrected]
« on: September 20, 2012, 07:42:53 PM »
To both: for one of them solution does not exist.

There was an error in the left-hand expression, now it has been corrected

2268
Technical Questions / Testing Math
« on: September 18, 2012, 11:59:02 PM »
Testing how MathJax was hooked up
\begin{align*}
u(x,t)= &\underbracket{\frac{1}{2}\bigl[ g(x+ct)+g(x-ct)\bigr]+\frac{1}{2c}\int_{x-ct}^{x+ct} h(y)\,dy}_{=u_2}+\\[3pt]
 &\underbracket{\frac{1}{2c}
\iint_{\Delta (x,t)} f(x',t' )\,dx\,d t' }_{=u_1}.
\label{eq-4}
\end{align*}

Pages: 1 ... 150 151 [152]