Author Topic: Q2 TUT 0101  (Read 641 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2466
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Q2 TUT 0101
« on: October 05, 2018, 06:11:52 PM »
Find the limit as $z\to \infty$  of the given function, or explain why it
does not exist:
\begin{equation*}
g(z)=\frac{4z^6 -7 z^3}{(z^2-4)^3}.
\end{equation*}

Tianfangtong Zhang

  • Full Member
  • ***
  • Posts: 16
  • Karma: 15
    • View Profile
Re: Q2 TUT 0101
« Reply #1 on: October 05, 2018, 07:22:31 PM »
$$g(z) = \frac{4z^6-7z^3}{(Z^2-4)^3} = \frac{4z^6-7z^3}{z^6-12z^4+48z^2-64}$$
we can divide $z^6$ on both numerator and denominator.
Then we can get
$$g(z) = \frac{4-7z^{-1}}{z-12z^{-2}+48z^{-4}-64z^{-6}}$$
Then as $z\to\infty $
$$\lim_{z\to\infty} f(z) = \frac{4 - 0}{1 - 0 + 0 - 0} = 4$$