Author Topic: Q2 TUT 0202  (Read 625 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2447
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Q2 TUT 0202
« on: October 05, 2018, 06:13:30 PM »
Find the values(s) of the given expression:
\begin{equation*}
\exp \Bigl[\pi \Bigl(\frac{i+1}{\sqrt{2}}\Bigr)^4\Bigr].
\end{equation*}

Quentin King

  • Newbie
  • *
  • Posts: 2
  • Karma: 8
    • View Profile
Re: Q2 TUT 0202
« Reply #1 on: October 05, 2018, 09:26:10 PM »
$(\frac{i+1}{\sqrt{2}})$ in polar coordinates is $\cos(\frac{\pi}{4}) + i\sin(\frac{\pi}{4})$

The roots of this equation are equally spaced on the unit circle around the origin, and the polar angle of $(\frac{i+1}{\sqrt{2}})^4$ is $\pi$

Therefore we know that $(\frac{i+1}{\sqrt{2}})^4 = \cos(\pi) + i\sin(\pi) = -1$

So finally, $\exp[\pi(\frac{i+1}{\sqrt{2}})^4] = \exp[-\pi]$
« Last Edit: October 06, 2018, 05:42:21 AM by Victor Ivrii »