Author Topic: 2.5 Q31  (Read 502 times)

Zhijian Zhu

  • Newbie
  • *
  • Posts: 3
  • Karma: 0
    • View Profile
2.5 Q31
« on: November 13, 2018, 10:49:00 PM »
hello, could anyone share the process of doing section2.5 #31?
show that $J_{-n}(-u)=(-1)^nJ_n(u)$
thank you guys!







Yiyi Cheng

  • Newbie
  • *
  • Posts: 1
  • Karma: 2
    • View Profile
Re: 2.5 Q31
« Reply #1 on: November 13, 2018, 10:59:00 PM »
This would be my answer to this question, feel free to ask me any question ;)
$\sum_{-\infty}^{\infty}{J_n(u)z^n}= G(z;u)$
$G(z;u)= e^{(\frac{u}{2})(z-\frac{1}{z})}= G(-\frac{1}{z};u)$
$=\sum_{-\infty}^{\infty} J_n(u)\frac{(-1)^n}{z^n}$
$=\sum_{-\infty}^{\infty} J_{-n}(u)(-1)^n z^n$
Therefore, we get $J_{-n}= (-1)^n J_n(u)$

Fan Yang

  • Newbie
  • *
  • Posts: 2
  • Karma: 0
    • View Profile
Re: 2.5 Q31
« Reply #2 on: November 13, 2018, 11:00:15 PM »
Hi!
The question you typed is wrong. It should be 𝐽−𝑛(𝑢)=(−1)𝑛𝐽𝑛(𝑢)