Author Topic: Q6 TUT 0801  (Read 1959 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2553
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Q6 TUT 0801
« on: November 17, 2018, 03:58:12 PM »
Find the general solution of the given system of equations:
$$\mathbf{x}'=
\begin{pmatrix}
1 &1 &1\\
2 &1 &-1\\
-8 &-5 &-3
\end{pmatrix}\mathbf{x}.$$

Qinger Zhang

  • Jr. Member
  • **
  • Posts: 10
  • Karma: 0
    • View Profile
Re: Q6 TUT 0801
« Reply #1 on: November 17, 2018, 04:27:28 PM »
Here is my answer.

Ming Tang

  • Newbie
  • *
  • Posts: 2
  • Karma: 3
    • View Profile
Re: Q6 TUT 0801
« Reply #2 on: November 17, 2018, 04:28:20 PM »
Here is my solution.

Qing Zong

  • Jr. Member
  • **
  • Posts: 7
  • Karma: 0
    • View Profile
Re: Q6 TUT 0801
« Reply #3 on: November 17, 2018, 04:34:04 PM »
This is my answer

Xue Wang

  • Newbie
  • *
  • Posts: 1
  • Karma: 2
    • View Profile
Re: Q6 TUT 0801
« Reply #4 on: November 17, 2018, 10:10:07 PM »
Here is my solution.

Jiexuan Wei

  • Jr. Member
  • **
  • Posts: 6
  • Karma: 6
    • View Profile
Re: Q6 TUT 0801
« Reply #5 on: November 18, 2018, 11:07:12 AM »
Here is my solution  :)

Pengyun Li

  • Full Member
  • ***
  • Posts: 20
  • Karma: 14
    • View Profile
Re: Q6 TUT 0801
« Reply #6 on: November 18, 2018, 02:43:08 PM »
Firstly, we need to find the eigenvalues and eigenvectors.

$det(A-\lambda I) = det\left|\begin{matrix}1-\lambda & 1 & 1 \\ 2 & 1-\lambda & -1 \\ -8 & -5 & -3-\lambda\end{matrix}\right| = (\lambda + 2)(\lambda - 2)(\lambda + 1)$
 
Thus, the eigenvalues are $\lambda_1 = -2, \lambda_2 = -1, \lambda_3 = 2$

When $\lambda_1 = -2, (A - \lambda I) = (A + 2I) = \left(\begin{matrix}3 & 1 & 1 \\ 2 & 3 & -1 \\ -8 & -5 & -1\end{matrix}\right)$

\begin{equation*}
   \begin{pmatrix}
  3 & 1 & 1\\
  2 & 3 & -1\\
  -8 & -5 & -1
  \end{pmatrix}
  \begin{pmatrix}
  x_1\\
  x_2\\
  x_3
  \end{pmatrix}=0
  \end{equation*}
   Let x_1 = t
 \begin{equation*}
\begin{pmatrix}
  x_1\\
  x_2\\
  x_3
  \end{pmatrix}=t
 \begin{pmatrix}
  -4\\
  5\\
  7
  \end{pmatrix}
\end{equation*}

Therefore, the corresponding eigenvector $\vec{v_1} = \left(\begin{matrix}-4 \\ 5 \\ 7\end{matrix}\right) $

Similarly, when $\lambda_2 = -1, \lambda_3 = 2$, we can get $\vec{v_2} = \left(\begin{matrix}-3 \\ 4 \\ 2\end{matrix}\right)
 and \ \vec{v_3} = \left(\begin{matrix}0 \\ -1 \\ 1\end{matrix}\right)$ respectively.

Therefore, the general solution $X(t) = c_1 e^{-t} \left(\begin{matrix}-3 \\ 4 \\ 2\end{matrix}\right) + c_2 e^{2t} \left(\begin{matrix}0 \\ -1 \\ 1\end{matrix}\right) + c_3 e^{-2t} \left(\begin{matrix}-4 \\ 5 \\ 7\end{matrix}\right)$

« Last Edit: November 18, 2018, 02:53:57 PM by Pengyun Li »

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2553
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Re: Q6 TUT 0801
« Reply #7 on: November 25, 2018, 09:39:39 AM »
I gave credits to the first student who posted readable solution. Scan, do not make pictures. No colour, no grayscale, just black-white