Author Topic: TUT 0602 Quiz 1  (Read 388 times)

Yichen Ji

  • Jr. Member
  • **
  • Posts: 9
  • Karma: 0
    • View Profile
TUT 0602 Quiz 1
« on: November 04, 2019, 05:58:57 PM »
Question:Solve the given differential equation:
\begin{equation*}
    \frac{dy}{dx}=\frac{x-e^{-x}}{y+e^{y}}
\end{equation*}
Solution:
Reordering:
\begin{equation*}
    (y+e^{y})dy=(x-e^{-x})dx
\end{equation*}
Take integration and multiplying$2$on both sides:
\begin{equation*}
    y^2+2e^{y}=x^2+2e^{-x}+c
\end{equation*}
for $c$ being constant.
Reordering,get implicit solution
\begin{equation*}
    y^2-x^2+2e^{y}-2e{-x}=c
\end{equation*}
« Last Edit: November 04, 2019, 06:00:49 PM by Yichen Ji »