### Author Topic: HA3 problem 2  (Read 2038 times)

#### Victor Ivrii

• Elder Member
• Posts: 2555
• Karma: 0
##### HA3 problem 2
« on: February 05, 2015, 07:27:12 PM »
Consider heat equation with a convection term

u_t+\underbracket{v u_x}_{\text{convection term}} =ku_{xx}.
\label{eq-HA3.4}

a.  Using change of variables $u(x,t)=U(x-vt,t)$ reduce it to ordinary heat equation and using (1)-(2) of http://www.math.toronto.edu/courses/apm346h1/20151/HA3.html for a latter write a formula for solution $u (x,t)$.
b.  Can we use the method of continuation to solve IBVP with Dirichlet or Neumann boundary condition at $x>0$ for (\ref{eq-HA3.4}) on $\{x>0,t>0\}$? Justify your answer.

#### Yang Liu

• Newbie
• Posts: 4
• Karma: 0
##### Re: HA3 problem 2
« Reply #1 on: February 06, 2015, 02:35:06 AM »
Attached

#### Victor Ivrii

• Elder Member
• Posts: 2555
• Karma: 0
##### Re: HA3 problem 2
« Reply #2 on: February 08, 2015, 05:47:12 AM »
a Idea correct but it will be $(x-vt)$ rather than $(x+vt)$