Alternative solution
One can solve first problem with $h(t)=0$:
\begin{equation*}
v(x,t)=\frac{1}{2}\Bigl[ F(x+2t)+F(x-2t)\Bigr]+ \frac{1}{4}\int _{x-2t}^{x+2t} G(x')\,dx' \qquad x>0
\end{equation*}
where $F(x')=0$,
$G(x')= \left\{\begin{aligned}&1 &&|{x'}|<1,\\ &0 &&|{x'}|>1\end{aligned}\right.$ and we applied method of continuation; then
integral is taken over $\max(x-2t,-1)< x'<\min (x+2t,1)$ which is empty as $x>2t+1$ and otherwise it is $\min (x+2t,1)-\max(x-2t,-1)=
\min (x+2t,1)+\min(-x+2t,1)=\min (4t, -x+2t+1, 2)$. So
\begin{align*}
v(x,t)=&\left\{\begin{aligned}
&0 && x>2t+1\\
&\frac{1}{4}\min (4t, -x+2t+1, 2) && 0<x<2t+1
\end{aligned}\right.=\\
&\left\{\begin{aligned}
&0 && x>2t+1\\
&\frac{1}{4}(2t+1-x)&& \max(1-2t,0)<x<1+2t,\\
& t && 0<x<1-2t.\
\end{aligned}\right.
\end{align*}
Next solve problem with $g(t)=0$. It is $w(x,t)=\psi (x-2t)$ with $\psi(0)=0$ and $\psi'(-2t)=h(t)$; then
$\psi'(x)=\left\{\begin{aligned} & 1 && 0>x>-2,\\ & 0 && x<-2\end{aligned}\right.$ and \\
$\psi(x)=\left\{\begin{aligned} & x && 0>x>-2,\\ & -2 && x<-2\end{aligned}\right.$ and
\begin{equation*}
w(x,t)=\left\{\begin{aligned}
&0 && x>2t,\\
& x-2t && 2t-2< x <2t,\\
&-2 && x<2t-2.
\end{aligned}\right.
\end{equation*}
Finally,
\begin{align*}
u(x,t)=v(x,t)+w(x,t)=&\left\{\begin{aligned}
&0 && x>2t+1\\
&\frac{1}{4}(2t+1-x)&& \max(1-2t,0)<x<1+2t,\\
& t && 0<x<1-2t
\end{aligned}\right.
\\ + &\left\{\begin{aligned}
&0 && x>2t,\\
& x-2t && 2t-2< x <2t,\\
&-2 && x<2t-2.
\end{aligned}\right.
\end{align*}