$\newcommand{\erf}{\operatorname{erf}}$
Method of continuation $u(x,t)$ should be solved as Cauchy problem with initial condition $u(x,0)=F(x)$ with
$F(x)=\left\{\begin{aligned}
&1\quad && |x|<1,\\
&0 &&|x|>1,\end{aligned}\right.$ and therefore
\begin{equation*}
u(x,t)= \frac{1}{\sqrt{12\pi t}} \int_{-1}^1 e^{-\frac{(x-y)^2}{12t}}\,dy=
\frac{1}{\sqrt{2\pi}} \int_{\frac{x-1}{\sqrt{2t}}}^{\frac{x+1}{\sqrt{2t}}} e^{-\frac{z^2}{2}}\,dy
\end{equation*}
where we set $y= x+ z\sqrt{6t}$ and finally
\begin{equation*}
u(x,t)=
\frac{1}{2} \Bigl[ \erf \Bigl(\frac{(x+1)}{\sqrt{6t}}\Bigr) - \erf \Bigl(\frac{(x-1)}{\sqrt{6t}}\Bigr)\Bigr]
\end{equation*}
where we used that $\sqrt{\frac{2}{\pi}} \int_a^b e^{-z^2/2}\,dz = \erf (b)-\erf (a)$.