Author Topic: Web bonus problem : Week 4 (#4)  (Read 1902 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2599
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii

Zaihao Zhou

  • Full Member
  • ***
  • Posts: 29
  • Karma: 0
    • View Profile
Re: Web bonus problem : Week 4 (#4)
« Reply #1 on: October 21, 2015, 10:02:55 PM »
a)
\begin{equation}     \frac{\partial E(t)}{\partial t} = \int_0^\infty (u_tu_{tt} +c^2u_xu_{xt}) dx + au(0)u_t(0)   \end{equation}
\begin{equation}     \frac{\partial E(t)}{\partial t} = \int_0^\infty (c^2u_tu_{xx} +c^2u_xu_{xt}) dx + au(0)u_t(0)   \end{equation}
\begin{equation}     \frac{\partial E(t)}{\partial t} = c^2\int_0^\infty (u_tu_x)_x dx + au(0)u_t(0)   \end{equation}
\begin{equation}     \frac{\partial E(t)}{\partial t} = u_t(au - c^2u_x)|_{x=0}    \end{equation}
We need
\begin{equation}     \frac{\alpha_1}{\alpha_0} = \frac{a}{-c^2} \ \ \   \rightarrow \ \ \  a = - \frac{\alpha_1}{\alpha_0}c^2  \end{equation}

b)
\begin{equation}     \frac{\partial E(t)}{\partial t} = \int_0^l (u_tu_{tt} +c^2u_xu_{xt}) dx + auu_t|_{x=0} + buu_t|_{x=l}   \end{equation}
\begin{equation}     \frac{\partial E(t)}{\partial t} =u_t( c^2u_x +bu)|_{x=l} + u_t(au - c^2u_x)|_{x=0}   \end{equation}
Thus we need
\begin{equation}     -\frac{\beta_1}{\beta_0} = \frac{b}{c^2} \ \ \   \rightarrow \ \ \  b = - \frac{\beta_1}{\beta_0}c^2  \end{equation}
\begin{equation}     -\frac{\beta_1}{\beta_0} = -\frac{a}{c^2} \ \ \  \rightarrow \ \ \  a =  \frac{\beta_1}{\beta_0}c^2  \end{equation}