$(a)$ $\\$
At $|z|=1$, $$\begin{align}|2z^5+4z+1+(-4z)|&=|2z^5+1|\\&\leq |2z^5|+1\\&=3\\&<4=|-4z|\end{align}$$
By Rouche's Theorem,
$2z^5+4z+1$ and $-4z$ has the same number of zeros.$\\$ Since $-4z$ has $1$ zero, therefore $2z^5+4z+1$ has $1$ zero in the disk $\{z\colon |z|<1\}$.
$\\$
$\\$
$(b)$ $\\$
At $|z|=2$, $$\begin{align}|2z^5+4z+1+(-2z^5)|&=|4z+1|\\&\leq |4z|+1\\&=5\\&<64=|-2z^5|\end{align}$$
By Rouche's Theorem, $2z^5+4z+1$ and $-2z^5$ has the same number of zeros.$\\$
Since $-2z^5$ has $5$ zeros inside $|z|=2$, therefore $2z^5+4z+1$ has $4$ zeros $(5-1=4)$ in the annulus $\{z\colon 1 <|z| < 2\}$.
$\\$
$\\$
$(c)$ $\\$
Notice that the degree of $f(z)=2z^5+4z+1$ is $5$. Which means it has at most $5$ roots. Now from part(b), all the roots are inside $|z|=2$, therefore there are no roots/zeros in the domain $\{z\colon |z|>2\}$.
$\\$
$\\$
$\\$
Show distinct:
$$f(z_0)=2z_{0}^5+4z_0+1=0 \\ f'(z_0)=10z_0^4+4\neq0$$
Thus the multiplicity is $1$, therefore they are all distinct.