Euler Suppose $y = x^r$
$\therefore$ $ y' = rx^{r-1}$
$y'' = r(r-1)x^{r-2}$
$2x^2\cdot r(r-1) X^{r-2} + 3x \cdot rX^{r-1} - X^r = 0$
$\therefore$ $X^r (r^2+3r + 2) = 0$
$\therefore$ $r^2 + 3r +2 =2 \qquad r = -2 \qquad r=-1$
$\therefore$ $y = c_1 X^{-1} + c_2 X^{-2}$