Author Topic: Q2 TUT 0201  (Read 4463 times)

Victor Ivrii

  • Administrator
  • Elder Member
  • *****
  • Posts: 2607
  • Karma: 0
    • View Profile
    • Personal website of Victor Ivrii
Q2 TUT 0201
« on: October 05, 2018, 06:12:58 PM »
Find all points of continuity of the given function:
\begin{equation*}
f(z)=\left\{\begin{aligned}
&\frac{z^4-1}{z-i}, &&z\ne i\\
&4i, &&z=i.
\end{aligned}
\right.
\end{equation*}

Xier Li

  • Newbie
  • *
  • Posts: 2
  • Karma: 2
    • View Profile
Re: Q2 TUT 0201
« Reply #1 on: October 05, 2018, 08:27:59 PM »
$(z^4-1)/(z-i) = z^3+iz^2-z-i$ when $z\ne i$.
When $z\to i$, $z^4-1)/(z-i) \to  -4i$.
This contradicts the fact that $f(z)=4i$ when $z=i$.
Thus, the function is continuous everywhere except $z=i.$
« Last Edit: October 06, 2018, 05:40:33 AM by Victor Ivrii »