APM346-2022S > Chapter 2

Chapter 2.2 problem 2

(1/1)

**Zicheng Ding**:

Chapter 2.2 problem 2 equation (9): $u_t + yu_x + xu_y = x$

and we get $\frac{dt}{1} = \frac{dx}{y} = \frac{dy}{x} = \frac{du}{x}$

By solving $\frac{dx}{y} = \frac{dy}{x}$ first we get $C = x^2 - y^2$

But we solving for either $\frac{dt}{1} = \frac{dx}{y}$ or $\frac{dt}{1} = \frac{dy}{x}$ we need to substitute $x$ for $y$ or the other direction, so in this case we will have a square root function like $x = \pm \sqrt{y^2 + C}$

I am not entirely sure whether or not we should proceed with the $\pm$ sign here or is there another easier approach to this question?

**Victor Ivrii**:

Both signs. What are curves $x^2-y^2=C$?

**Zicheng Ding**:

$x^2 - y^2 = C$ is a hyperbolic curve so it has two parts for x. I see now, thank you professor.

Navigation

[0] Message Index

Go to full version