1
MidTerm / Re: MT, P1
« on: October 11, 2013, 10:05:54 AM »
thank u prof.
This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.
And where this solution is defined? $\DeclareMathOperator{\arctanh}{arctanh}$
BTW, when collecting MT I have seen this problem and in many papers integration was atrocious.
As long as $|y|<1$ we have $\int \frac{dy}{1-y^2}=\arctanh (y)$ (inverse hyperbolic function $\tanh$) and then
$y=\tanh (t)=\frac{{e^t}-e^{-t}}{e^{t}+e^{-t}}$ (similar to $\int \frac{dy}{1+y^2}=\arctan(y)$).
Xuewen Yang,
good job, for multiplication do not use * (it is a convolution, different operation) use either \cdot like in $a\cdot b$ or \times like $a\times b$.
Xiaozeng Yu, no point to post inferior solution (scan) after superior (typed) has been posted. This time I awarded "scan posted after scan", but not in the future.
For Xiaozeng Yu,
Is there a problem with the sign change? from "plus" (2nd row) to "minus" (3rd row) ?