### Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.

### Messages - lixinze2

Pages: [1]
1
##### Quiz-4 / TUT0201 Quiz 4
« on: October 19, 2019, 10:42:24 AM »
find the general solution of the given differential equation
$y'' +2y'=3+4sin(2t)$

1. $y'' +2y'= 0$
$r^2+2r=0$
$r_1=-2$ and $r_2=0$
$y_1 = e^{-2t}$ and $y_2= = 1$
So the general solution of the homogenous SODE is $y = c_1e^{-2t}+c_2$

2. $y''+2y' = 3$
let
$Y(t) = At$
$Y'= A$
$Y''=0$
So, $Y''+2Y'=2A=3$
$A={3\over2}$
So $y={3\over2}t$

3.$y'' +2y'=4sin(2t)$
Consider $Y=Asin(2t)+Bcos(2t)$
$Y'=2Acos(2t)-2Bsin(2t)$
$Y''= -4sin(2t)-4Bcos(2t)$
So $Y''+2Y'=-4Asin(2t)-4Bcos(2t)+4Acos(2t) - 4Bsin(2t) =(-4A-4B)sin(2t)+(-4B+4A)cos(2t)=4sin(2t)$
$( t = 0) \Rightarrow A=B$
$(t={\pi\over 4}) \Rightarrow -A-B = 1$
$A={1\over 2}$ and $B = {1\over2}$
So $y = {1\over 2} sin(2t) + {1\over 2}cos(2t)$

The general solution is $y = c_1e^{-2t}+c_2+{3\over2}t+{1\over 2} sin(2t) + {1\over 2}cos(2t)$

2
##### Quiz-3 / TUT0201 Quiz 3
« on: October 11, 2019, 02:00:26 PM »
Question: Find a differential equation whose general solution is $y = c_1e^{2t}+c_2e^{-3t}$

Since the solution is the linear combination of $y_1=e^{2t}$ and $y_2=e^{-3t}$
So,consider $r_1=2$ and $r_2=-3$ such that $(r-2)(r+3)=0$
So, $r^2+r-6=0$
Therefore, we know the equation $y''+y'-6y=0$ satisfies our solution

Pages: [1]