Toronto Math Forum
MAT3342018F => MAT334Tests => Quiz1 => Topic started by: Victor Ivrii on September 28, 2018, 04:19:22 PM

$\renewcommand{\Re}{\operatorname{Re}}
\renewcommand{\Im}{\operatorname{Im}}$
Show that the two lines $\Re(az + b) = 0$ and $\Re(cz + d) = 0$ are perpendicular if and only if $\Re(a\bar{c}) = 0$.

Let the lines $Re(a+ib)=0$ and $Re(c+id)=0$ be perpendicular.
From section 1.2: Let $a = A+iB$ and $c= C+iD$. Then the lines are $AxBy+Re(b)=0$ and $CxDy+Re(d)=0$
Setting the slope of the first equal to the negative reciprocal of the other we get: $\frac{A}{B} =  \frac{D}{C} \iff AC=BD$
Finally, $Re(a \bar{c}) = Re[(A+iB)(CiD)]=AC+BD=BD+BD=0$