$$\tan(z) = \frac{\sin(z)}{\cos (z)} = \frac{z - \frac{1}{3!}z^3 + \frac{z^5}{5!} - \frac{z^7}{7!}...}{1 - \frac{z^2}{2!}+\frac{z^4}{4!}...} = a_0 + a_1z + a_2z^2 +a_3z^3 + ...$$
Thus
$(a_0 + a_1z + a_2z^2 +a_3z^3 + ...)(1 - \frac{z^2}{2!}+\frac{z^4}{4!}...) = z - \frac{1}{3!}z^3 + \frac{z^5}{5!} - \frac{z^7}{7!}...$
Thus we get
$a_0 = 0$
$a_1 = 1$
$a_2 = 0$
.
.
.
Therefore $\tan(z) = z + \frac{1}{3}z^3 + \frac{2}{15}z^5 ....$