$$ty'+2y=sint$$
First, we divide both sides of the given equation by $t$, we get: $\\$
$$y'+{2\over t}y={sint\over t}$$
Now the differential equation has the form
$$y'+p(t)y=g(t)$$
Hence $p(t)={2\over t}$ and $g(t)={sint\over t}$$\\$
First, we find the integrating factor $\mu(t)$ $\\$
As we know. $\mu(t)=\exp^{\int{p(t)dt}}$ $\\$
Thus, $\mu(t)=\exp^{\int{{2\over t}dt}}=e^{2ln|t|}=e^{ln|t|}\cdot e^{ln|t|}=t\cdot t=t^{2}$$\\$
Then mutiply $\mu(t)$ to both sides of the equation, we get:
$$t^2y'+2ty=tsint$$
and $$(t^2y)'=tsint$$
Integrating both sides:
$$\int{(t^2y)'}=\int{tsint}$$
Thus, $$t^2y=\int{tsint}$$
For $\int{tsin(t)}$, we use Integration By Parts:$\\$
Let $u=t, dv=sint$.$\\$
Then $du=dt, v=-cost$$\\$
Hence, $$\int{tsint}=uv-\int{vdu}$$
$$\int{tsint}=-tcost-\int{-costdt}$$
$$\int{tsint}=-tcost+\int{costdt}$$
$$\int{tsint}=-tcost+sint+c$$
Thus $$t^2y=-tcost+sint+c$$
where $c$ is arbitrary constant.$\\$
Now we divide both sides by $t^2$, we get the general solution:
$$y={(sint-tcost+c)/t^2}$$
Since given $t>0$, $y\rightarrow 0$ as $t \rightarrow \infty$.