Toronto Math Forum

MAT334-2018F => MAT334--Tests => Term Test 2 => Topic started by: Victor Ivrii on November 24, 2018, 04:28:29 AM

Title: TT2 Problem 2
Post by: Victor Ivrii on November 24, 2018, 04:28:29 AM
(a) Find the decomposition into power series at ${z=0}$ of $f(z)=(1-z)^{-\frac{1}{2}}$. What is the radius of convergence?

(b) Plugging in $z^2$ instead of $z$ and integrating, obtain a decomposition at $z=0$ of  $\arcsin (z)$.
Title: Re: TT2 Problem 2
Post by: ZhenDi Pan on November 24, 2018, 04:47:23 AM
For question a, we have
\begin{equation}
f(z)=(1-z)^{-1/2} \\
a_n = \frac{f^{(n)}(z_0)}{n!} =  \frac{f^{(n)}(0)}{n!}
\end{equation}
Then the $nth$ derivative of $f(z)$ can be derived as
\begin{equation}
f^\prime(z) = \frac{1}{2}(1-z)^{-3/2} \\
f''(z) = \frac{3}{4}(1-z)^{-5/2} \\
f'''(z) = \frac{15}{8} \times  (1-z)^{-7/2} \\
f''''(z) =\frac{105}{16} \times (1-z)^{-9/2}
\end{equation}
At $z=0$
\begin{equation}
f(0) = 1
f'(0) = \frac{1}{2} \\
f''(0) = \frac{3}{4} \\
f'''(0) = \frac{15}{8} \\
f''''(0) =  \frac{105}{16} \\
f^{(n)}(0) =  \frac{1 \times 3 \times \dots \times (2n-1)}{2^n} \\
a_n = \frac{1 \times 3 \times 5 \times \dots \times (2n-1)}{2^n n!}
\end{equation}
Thus we have the power series
\begin{equation}
f(z)= \sum_{n=0}^{\infty}\frac{f^{(n)}(0)}{n!}z^n = 1 + \frac{z}{2} + \frac{3z^2}{8}+ \dots
\end{equation}
The radius of convergence is
\begin{equation}
\frac{1}{R} = \lim_{n \to \infty} |\frac{a_{n+1}}{a_{n}}| \\
\frac{1}{R} = \lim_{n \to \infty} \mid \frac{f^{(n+1)}(0)}{(n+1)!} \times \frac{n!}{f^{(n)}(0)} \mid \\
\frac{1}{R} = \lim_{n \to \infty} \mid \frac{2n+1}{2(n+1)} \times \frac{1}{1} \mid \\
\frac{1}{R} = \lim_{n \to \infty} \mid \frac{2n+1}{2n+2} \mid = 1 \\
R = 1
\end{equation}

For question b, let
\begin{equation}
F(z) = \arcsin(z) \\
F'(z)=\frac{1}{\sqrt{1-z^2}} = (1-z^2)^{-1/2}
\end{equation}
Note that
\begin{equation}
f(z^2)=(1-z^2)^{-1/2} \Rightarrow F'(z)=f(z^2) \\
F(z) = \int f(z^2)
\end{equation}
Then
\begin{equation}
f(z^2) = \sum_{n=0}^{\infty}\frac{1\times 3 \times 5 \dots \times (2n-1)}{2^n n!}z^2n \\
F(z) = \int f(z^2) = \int \sum_{n=0}^{\infty}\frac{1\times 3 \times 5 \dots \times (2n+1)}{2^n n!}z^{2n} dz
F(z) = (\sum_{n=0}^{\infty}\frac{1\times 3 \times 5 \dots \times (2n-1)}{2^n n! \cdot (2n+1)}z^{2n+1}) +C
\end{equation}
Since $F(0) = 0 \Rightarrow C=0$
\begin{equation}
F(z) = \sum_{n=0}^{\infty}\frac{1\times 3 \times 5 \dots \times (2n+1)}{2^n n! \cdot (2n+!)}z^{2n+1}
\end{equation}
Title: Re: TT2 Problem 2
Post by: hanyu Qi on November 24, 2018, 05:33:36 PM
Can we use geometric series on f(z) and assume |z|<1, then we can write 1/√(1-z) directly into Laurent series.

How?

 However the series decomposition may be different but the radius of convergence is the same.

We are not looking for just radius. Basically this post was a flood. V.I.