Please note: handouts are not only obligatory but allow you to solves problems faster. See problem 3 in particular.
1 [6 points]. Find integrating factor and solve

$$
x d x+y\left(1+x^{2}+y^{2}\right) d y=0
$$

Solution. As $M=x, N=y\left(1+x^{2}+y^{2}\right)$, calculating $M_{y}-N_{x}=-2 x y$ we see that it is not 0 but $\left(M_{y}-N_{x}\right) / N=-2 y$ does not depend on x and therefore we are looking for an integrating factor $\mu=\mu(y)$ satisfying

$$
(\log \mu)^{\prime}=2 y \Longrightarrow \mu=e^{y^{2}}
$$

and therefore multiplying by $e^{y^{2}}$ we get

$$
\begin{aligned}
& x e^{y^{2}} d x+y e^{y^{2}}\left(1+x^{2}+y^{2}\right) d y=0 \Longrightarrow \Psi_{x}=x e^{y^{2}} \Longrightarrow \\
& \Psi=\frac{1}{2} x^{2} e^{y^{2}}+\chi(y) \Longrightarrow \Psi_{y}=x^{2} y e^{y^{2}}+\chi^{\prime}(y)=e^{y^{2}}\left(1+x^{2}+y^{2}\right) y \Longrightarrow \\
& \quad \chi^{\prime}(y)=y\left(y^{2}+1\right) e^{y^{2}} \Longrightarrow \chi(y)=\frac{1}{2} y^{2} e^{y^{2}} \Longrightarrow \Psi=\frac{1}{2}\left(x^{2}+y^{2}\right) e^{y^{2}}
\end{aligned}
$$

Answer: $\left(x^{2}+y^{2}\right) e^{y^{2}}=C$.
$\mathbf{2 a}$ [2 points]. Consider equation

$$
(\cos (t)+t \sin (t)) y^{\prime \prime}-t \cos (t) y^{\prime}+y \cos (t)=0
$$

Find wronskian $W=W\left[y_{1}, y_{2}\right](t)$ of two solutions such that $W(0)=1$.
$\mathbf{2 b}$ [2 points]. Check that one of the solutions is $y_{1}(t)=t$. Find another solution y_{2} such that $W\left[y_{1}, y_{2}\right](\pi / 2)=\pi / 2$ and $y_{2}(\pi / 2)=0$.
Solution. (a) Consider the equation for W :

$$
\begin{aligned}
W^{\prime} / W= & \frac{t \cos (t)}{\cos (t)+t \sin (t)} \Longrightarrow \ln W=\int \frac{t \cos (t)}{\cos (t)+t \sin (t)} d t= \\
& \ln (\cos (t)+t \sin (t))+\ln C \Longrightarrow W=C(\cos (t)+t \sin (t))
\end{aligned}
$$

To evaluate the above integral use the substitution $u=\cos (t)+t \sin (t)$. Then $W(0)=1 \Longrightarrow C=1 \Longrightarrow W=(\cos (t)+t \sin (t))$.
(b) Note that $\frac{\pi}{2}=\cos \left(\frac{\pi}{2}\right)+\frac{\pi}{2} \sin \left(\frac{\pi}{2}\right)=W\left[y_{1}, y_{2}\right]\left(\frac{\pi}{2}\right)$

Plugging $y_{1}=t$ into the Wronskian, and using the integrating factor $\mu=\frac{1}{t}$, we get

$$
\begin{aligned}
& \left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{ll}
t & y_{2} \\
1 & y_{2}^{\prime}
\end{array}\right|=t y_{2}^{\prime}-y_{2}=(\cos (t)+t \sin (t)) \Longrightarrow \\
& \left(y_{2} t^{-1}\right)^{\prime}=(\cos (t)+t \sin (t)) t^{-2} \\
& \Longrightarrow y_{2} t^{-1}=\int\left(t^{-2} \cos (t)+t^{-1} \sin (t)\right) d t= \\
& -t^{-1} \cos (t)+C_{1} \Longrightarrow y_{2}=-\cos (t)+C_{1} t . \\
& y_{2}(\pi / 2)=0 \Longrightarrow 0=0+\frac{\pi}{2} C_{1} \Longrightarrow C_{1}=0 .
\end{aligned}
$$

Answer: $y_{2}=-\cos (t)$.
$\mathbf{3}$ [6 points]. Find the general solution for equation

$$
y^{\prime \prime}+4 y^{\prime}+5 y=t e^{-2 t}+e^{-2 t} \cos (t)
$$

Solution. The characteristic equation is

$$
r^{2}+4 r+5=0 \Longrightarrow(r+2)^{2}=-1 \Longrightarrow r_{1,2}=-2 \pm i .
$$

General solution to homogeneous equation is $y=e^{-2 t}\left(C_{1} \cos (t)+C_{2} \sin (t)\right)$. "Short" solution using handout \#8:

$$
L(y)=y^{\prime \prime}+4 y^{\prime}+5 y ; \quad g(t)=t e^{-2 t}+e^{-2 t} \cos (t) .
$$

Step 1: $Q(r)=r^{2}+4 r+5, Q^{\prime}(r)=2 r+4 ; Q(-2)=1 \quad \Longrightarrow \quad m=1$, $Q^{\prime}(-2)=0$,
$Q(-2+i)=4-4 i-1-8+4 i+5=0, Q^{\prime}(-2+i)=-4+2 i+4=2 i \Longrightarrow$ $m=1$

STEP 2: $L\left(t e^{-2 t}\right)=t e^{-2 t}+0$
$L\left(t e^{(-2+i) t}\right)=2 i e^{(-2+i) t}=2 e^{-2 t}(-\sin (t)+i \cos (t))$
STEP 3: $y_{p}(t)=t e^{-2 t}+\frac{t}{2} e^{-2 t} \sin (t)$.
Answer: $y(t)=e^{-2 t}\left(C_{1} \cos (t)+C_{2} \sin (t)\right)+t e^{-2 t}+\frac{t}{2} e^{-2 t} \sin (t)$
"LONG" SOLUTION USING UNDETERMINED COEFFICIENTS:
As $f_{1}=t e^{-2 t}$ we look for a solution $\bar{y}_{1}=(a t+b) e^{-2 t}$ and find $\bar{y}_{1}=t e^{-2 t}$. Indeed,

$$
\begin{aligned}
& \bar{y}_{1}^{\prime}=(a-2 b-2 a t) e^{-2 t} \text { and } \bar{y}_{1}^{\prime \prime}=(-4 a+4 b+4 a t) e^{-2 t} \\
\Longrightarrow & t e^{-2 t}=\bar{y}_{1}^{\prime \prime}+4 \bar{y}_{1}^{\prime}+5 \bar{y}=e^{-2 t}(a t+b) \\
\Longrightarrow & a=1 \text { and } b=0 \\
\Longrightarrow & \bar{y}_{1}=t e^{-2 t}
\end{aligned}
$$

As $f_{2}=e^{-2 t} \cos (t)$, which appears in the solution to the homogeneous equation, we look for a solution $\bar{y}_{2}=t e^{-2 t}(c \cos (t)+d \sin (t))$ and find $\bar{y}_{2}=\frac{t}{2} e^{-2 t} \sin (t)$. Indeed,

$$
\begin{aligned}
& \bar{y}_{2}^{\prime}=e^{-2 t}((c+d t-2 c t) \cos (t)+(d-c t-2 d t) \sin (t)), \\
& \bar{y}_{2}^{\prime \prime}=e^{-2 t}((2 d-4 c-4 d t+3 c t) \cos (t)+(-2 c-4 d+4 c t+3 d t) \sin (t)) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& e^{-2 t} \cos (t)=\bar{y}_{2}^{\prime \prime}+4 \bar{y}_{2}^{\prime}+5 \bar{y}_{2}=e^{-2 t}(2 d \cos (t)-2 c \sin (t)) \\
\Longrightarrow & c=0 \text { and } d=\frac{1}{2} \\
\Longrightarrow & \bar{y}_{2}=\frac{t}{2} e^{-2 t} \sin (t)
\end{aligned}
$$

Answer: $y=e^{-2 t}\left(C_{1} \cos (t)+C_{2} \sin (t)\right)+t e^{-2 t}+\frac{t}{2} e^{-2 t} \sin (t)$.
4 [4 points]. Find solution of

$$
y^{(4)}+8 y^{\prime \prime}+16 y=0
$$

satisfying initial conditions

$$
y(0)=1, y^{\prime}(0)=y^{\prime \prime}(0)=y^{\prime \prime \prime}(0)=0 .
$$

SOLUTION. $r^{4}+8 r^{2}+16=\left(r^{2}+4\right)^{2} \Longrightarrow r_{1}=r_{2}=2 i, r_{3}=r_{4}=-2 i \Longrightarrow$

$$
y(t)=C_{1} \cos (2 t)+C_{2} t \cos (2 t)+C_{3} \sin (2 t)+C_{4} t \sin (2 t) .
$$

Then

$$
\begin{aligned}
y^{\prime}(t) & =\left(-2+C_{4}-2 t C_{2}\right) \sin (2 t)+\left(2 C_{3}+C_{2}+2 t C_{4}\right) \cos (2 t), \\
y^{\prime \prime}(t) & =\left(-4+4 C_{4}-4 t C_{2}\right) \cos (2 t)+\left(-4 C_{2}-4 C_{3}-4 t C_{4}\right) \sin (2 t), \\
y^{\prime \prime \prime}(t) & =\left(8-8 C_{4}+8 t C_{2}\right) \sin (2 t)+\left(-8 C_{3}-12 C_{2}-8 t C_{4}\right) \cos (2 t) .
\end{aligned}
$$

MAT244, Spring 2013, Term Test 1, Wednesday, February 13, Solutions 4

Then $y(0)=C_{1}=1, y^{\prime}(0)=C_{2}+2 C_{3}=0, y^{\prime \prime}(0)=-4 C_{1}+4 C_{4}=0$, $y^{\prime \prime \prime}(0)=-8 C_{3}-12 C_{2}=0$ and solving these equations yields $C_{1}=C_{4}=1$ and $C_{2}=C_{3}=0$.

Answer: $y(t)=\cos (2 t)+t \sin (2 t)$.

