Toronto Math Forum
Welcome,
Guest
. Please
login
or
register
.
1 Hour
1 Day
1 Week
1 Month
Forever
Login with username, password and session length
News:
Home
Help
Search
Calendar
Login
Register
Toronto Math Forum
»
MAT334-2018F
»
MAT334--Tests
»
Quiz-4
»
Q4 TUT 0201
« previous
next »
Print
Pages: [
1
]
Author
Topic: Q4 TUT 0201 (Read 4828 times)
Victor Ivrii
Administrator
Elder Member
Posts: 2607
Karma: 0
Q4 TUT 0201
«
on:
October 26, 2018, 05:48:15 PM »
Evaluate the given integral using Cauchy’s Formula or Theorem. Orientation counter-clockwise:
$$
\int_{|z|=1} \frac{z\,dz} {(z-2)^2}.
$$
Logged
Jeffery Mcbride
Full Member
Posts: 24
Karma: 19
Re: Q4 TUT 0201
«
Reply #1 on:
October 26, 2018, 05:52:26 PM »
\begin{equation*}
This\ formula\ cannot\ be\ re-written\ with\ Cauchy's\ formula,\ so\ we\ use\ Cauchy's\ theorem.\\
\\
\int _{|z|\ =\ 1} f( z) dz\ =\ 0\\
\\
\int _{|z|\ =\ 1} \ \frac{z}{( z-2)^{2}} \ dz\ =\ 0\\
\end{equation*}
Logged
Print
Pages: [
1
]
« previous
next »
Toronto Math Forum
»
MAT334-2018F
»
MAT334--Tests
»
Quiz-4
»
Q4 TUT 0201