I think the residue at 0 should be 0..
Here's my answer: (in calculation I ignore k for convenience)
${\rm f}\left({\rm z}\right){\rm =}{\tan \left({\rm z}\right)\ }{\rm +z}{{\cot }^{{\rm 2}} \left(z\right)=\frac{{\sin \left(z\right)\ }}{{\cos \left(z\right)\ }}+\frac{z{{\cos }^2 \left(z\right)\ }}{{{\sin }^2 \left(z\right)\ }}\ }=\frac{{{\sin }^3 (z)\ }+z{{\cos }^3 (z)\ }}{{\cos \left(z\right)\ }{{\sin }^2 \left(z\right)\ }}$
If ${\cos \left(z\right)\ }=0$, then ${\rm z=}\frac{\pi}{2} + k\pi$
For numerator, ${{\sin }^3 (\frac{\pi}{2})\ }+\frac{\pi}{2}{{\cos }^3 \left(\frac{\pi}{2}\right)\ne 0\ }$, the numerator has zero order of zeros
For denominator, ${\cos \left(\frac{\pi}{2}\right)\ }{{\sin }^2 \left(\frac{\pi}{2}\right)=0\ ,-{{\sin }^3 \left(\frac{\pi}{2}\right)\ }+\frac{\pi}{2}{{\cos }^2 \left(\frac{\pi}{2}\right)\ }{\sin \left(\frac{\pi}{2}\right)\ }\ne 0\ }$, the denominator has zeros of order 1
Then ${\rm f}\left({\rm z}\right)$ has simple pole ${\rm z=}\frac{\pi}{2}+k\pi$
If ${{\sin }^{{\rm 2}} \left(z\right)\ }=0$, then ${\rm z=0}$ or ${\rm z=}k\pi $
When ${\rm z=0}$,
For numerator, ${{\sin }^3 (0)\ }+0{{\cos }^3 \left(0\right)=0\ },3{{\sin }^2 \left(0\right)+{{\cos }^3 \left(0\right)\ }+3{{\cos }^2 (0)\ }{\rm sin}?(0)\ }\ \ne 0\ $, the numerator has zero order of 1
For denominator, ${\cos \left(0\right)\ }{{\sin }^2 \left(0\right)=0\ ,-{{\sin }^3 \left(0\right)\ }+2{{\cos }^2 \left(0\right)\ }{\sin \left(0\right)\ }=0\ },\ -3{{\sin }^2 \left(0\right){\cos \left(0\right)\ }-4{\cos \left(0\right)\ }{{\sin }^{{\rm 2}} \left(0\right)\ }+2cos^3\left(0\right)\ne 0\ }$, the denominator has zeros of order 2
Then ${\rm f}\left({\rm z}\right)$ has simple pole ${\rm z=0}$
When ${\rm z=}k\pi $,
For numerator, ${{\sin }^3 (\pi )\ }+0{{\cos }^3 \left(\pi \right)\ne 0\ }$ the numerator has zero order of 0
For denominator, ${\cos \left(\pi \right)\ }{{\sin }^2 \left(\pi \right)=0\ ,-{{\sin }^3 \left(\pi \right)\ }+2{{\cos }^2 \left(\pi \right)\ }{\sin \left(\pi \right)\ }=0\ },\ -3{{\sin }^2 \left(\pi \right){\cos \left(\pi \right)\ }-4{\cos \left(\pi \right)\ }{{\sin }^{{\rm 2}} \left(\pi \right)\ }+2cos^3\left(\pi \right)\ne 0\ }$, the denominator has zeros of order 2
Then ${\rm f}\left({\rm z}\right)$ has pole ${\rm z=}k\pi $ with order 2
${\rm Res}\left({\rm f}\left({\rm z}\right),\frac{\pi}{2}+k\pi\right)=\frac{{{\sin }^3 (\frac{\pi }{{\rm 2}})\ }+\frac{\pi}{2}{{\cos }^3 (\frac{\pi}{2})\ }}{-{{\sin }^3 \left(\frac{\pi }{{\rm 2}}\right)\ }+2{{\cos }^2 \left(\frac{\pi }{{\rm 2}}\right)\ }{\sin \left(\frac{\pi }{{\rm 2}}\right)\ }}=\frac{1}{-1}=-1$
${\rm Res}\left({\rm f}\left({\rm z}\right),k\pi\right)=\frac{3{{\sin }^2 \left(\pi\right)+{{\cos }^3 \left(\pi\right)\ }+3{{\cos }^2 (\pi)\ }{\rm sin}(\pi)\ }}{1!}=\frac{-1}{1}=-1$
Since ${\rm f}\left({\rm z}\right)=\frac{{{\sin }^3 (z)\ }+z{{\cos }^3 (z)\ }}{{\cos \left(z\right)\ }{{\sin }^2 \left(z\right)\ }}=\frac{{\left(\int^{\infty }_0{{\left(-1\right)}^n\frac{z^{2n+1}}{\left(2n+1\right)!}}\right)}^3+\int^{\infty }_0{{\left(-1\right)}^n\frac{z^{2n+1}}{\left(2n\right)!}}}{\int^{\infty }_0{{\left(-1\right)}^n\frac{z^{2n}}{\left(2n\right)!}}\ {\left(\int^{\infty }_0{{\left(-1\right)}^n\frac{z^{2n+1}}{\left(2n+1\right)!}}\right)}^2}$ has no term of ${\left({\rm z-0}\right)}^{{\rm -}{\rm 1}}$, then
${\rm Res}\left({\rm f}\left({\rm z}\right),0\right)=0$