Show Posts

This section allows you to view all posts made by this member. Note that you can only see posts made in areas you currently have access to.

Messages - Huan Ying Huang

Pages: [1]
MidTerm / Re: MT, P5
« on: October 09, 2013, 10:50:10 PM »
$$y_n=y_{n-1}+h f(t_n,y_n),$$
with $f(t,y)=3y^2-t$.

$t_0=0$, $y_0=0$,  $f(t_0,y_0)=0$,

$y_1=0+\frac{1}{3}\cdot 0=0$.

$t_1=\frac{1}{3}$,   $y_1=0$,  $f(t_1,y_1)=-\frac{1}{3}$,

$y_2= 0+ \frac{1}{3}\cdot (-\frac{1}{3})=-\frac{1}{9}$,

$t_2=\frac{2}{3}$,   $y_2=-\frac{1}{9}$,  $f(t_2,y_2)=-\frac{17}{27}$,

$y_3=-\frac{1}{9}+\frac{1}{3}\cdot (-\frac{17}{27}) =-\frac{26}{81}$.

I edited this post. Do not use "x" or "*" for multiplication (* is a convolution, to be studied in APM346 f.e.)  V.I.

Pages: [1]