Again, what crapware produce this code?
\begin{array}{l}\det (A - rI) = \left( {\begin{array}{*{20}{c}}{2 - r}&{ - 5}\\1&{ - 2 - r}\end{array}} \right) = {r^2} + 1 = 0\\r = \pm i\\{\rm{when }} r = i\\(2 - i){\xi _1} = 5{\xi _2}{\rm{ and }}{\xi ^1} = \left( {\begin{array}{*{20}{c}}5\\{2 - i}\end{array}} \right)\\{x^1} = \left( {\begin{array}{*{20}{c}}5\\{2 - i}\end{array}} \right){e^{it}} = \left( {\begin{array}{*{20}{c}}5\\{2 - i}\end{array}} \right)(\cos t + i\sin t)\\\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; = \left( {\begin{array}{*{20}{c}}{5\cos t}\\{2\cos t + \sin t}\end{array}} \right) + i\left( {\begin{array}{*{20}{c}}{5\sin t}\\{2\sin t - \cos t}\end{array}} \right)\\x = {c_1}\left( {\begin{array}{*{20}{c}}{5\cos t}\\{2\cos t + \sin t}\end{array}} \right) + {c_2}\left( {\begin{array}{*{20}{c}}{5\sin t}\\{2\sin t - \cos t}\end{array}} \right)\end{array}