16
TT1 / Re: TT1-P2
« on: October 19, 2016, 10:54:06 PM »
My solution is:
(a)
$$u(x,t) = - {e^{ - {{{x^2}} \over 2}}}$$
As:
$$u = {1 \over 2}( - {e^{ - {{{{(x + t)}^2}} \over 2}}} - {e^{ - {{{{(x - t)}^2}} \over 2}}}) + \underbrace {{1 \over {2c}}\int_0^t {\int_{x - t + t'}^{x + t - t'} {({y^2} - 1)} } {e^{ - {{{y^2}} \over 2}}}dydt'}_{(3)}$$
The inner integral of $(3)$ yields:
$$\int_{x - t + t'}^{x + t - t'} {{y^2}} {e^{ - {{{y^2}} \over 2}}} - {e^{ - {{{y^2}} \over 2}}}dy = \underbrace {\int_{x - t + t'}^{x + t - t'} {{y^2}} {e^{ - {{{y^2}} \over 2}}}dy}_{(4)} - \int_{x - t + t'}^{x + t - t'} {{e^{ - {{{y^2}} \over 2}}}} dy$$
$$(4) = \int_{x - t + t'}^{x + t - t'} y {e^{ - {{{y^2}} \over 2}}}ydy = \left. { - {e^{ - {{{y^2}} \over 2}}}y} \right|_{y = x - t + t'}^{y = x + t - t'} + \int_{x - t + t'}^{x + t - t'} {{e^{ - {{{y^2}} \over 2}}}} dy$$
Therefore
$$\int_{x - t + t'}^{x + t - t'} {{y^2}} {e^{ - {{{y^2}} \over 2}}} - {e^{ - {{{y^2}} \over 2}}}dy = \left. { - {e^{ - {{{y^2}} \over 2}}}y} \right|_{y = x - t + t'}^{y = x + t - t'} + \int_{x - t + t'}^{x + t - t'} {{e^{ - {{{y^2}} \over 2}}}} dy - \int_{x - t + t'}^{x + t - t'} {{e^{ - {{{y^2}} \over 2}}}} dy = (x - t + t'){e^{ - {{{{(x - t + t')}^2}} \over 2}}} - (x + t - t'){e^{ - {{{{(x + t - t')}^2}} \over 2}}}$$
so $(3)$ becomes:
$${1 \over 2}\int_0^t {(x - t + t'){e^{ - {{{{(x - t + t')}^2}} \over 2}}} - (x + t - t'){e^{ - {{{{(x + t - t')}^2}} \over 2}}}} dt'\matrix{
{} & {} \cr
} (c = 1)$$
$$ = {1 \over 2}\int_{x - t}^x {z{e^{ - {{{z^2}} \over 2}}}} dz + {1 \over 2}\int_{x + t}^x {z{e^{ - {{{z^2}} \over 2}}}} dz$$
$$ = - {e^{ - {{{x^2}} \over 2}}} + {1 \over 2}{e^{ - {{{{(x - t)}^2}} \over 2}}} + {1 \over 2}{e^{ - {{{{(x + t)}^2}} \over 2}}}$$
Finally,
$$u = {1 \over 2}( - {e^{ - {{{{(x + t)}^2}} \over 2}}} - {e^{ - {{{{(x - t)}^2}} \over 2}}})- {e^{ - {{{x^2}} \over 2}}} + {1 \over 2}{e^{ - {{{{(x - t)}^2}} \over 2}}} + {1 \over 2}{e^{ - {{{{(x + t)}^2}} \over 2}}} $$
$$ \Rightarrow u(x,t) = - {e^{ - {{{x^2}} \over 2}}}$$
(b) Since u does not depend on t, so we basically get the same equation:
$$\mathop {\lim }\limits_{t \to \infty } = u(x,t) = - {e^{ - {{{x^2}} \over 2}}}$$
(a)
$$u(x,t) = - {e^{ - {{{x^2}} \over 2}}}$$
As:
$$u = {1 \over 2}( - {e^{ - {{{{(x + t)}^2}} \over 2}}} - {e^{ - {{{{(x - t)}^2}} \over 2}}}) + \underbrace {{1 \over {2c}}\int_0^t {\int_{x - t + t'}^{x + t - t'} {({y^2} - 1)} } {e^{ - {{{y^2}} \over 2}}}dydt'}_{(3)}$$
The inner integral of $(3)$ yields:
$$\int_{x - t + t'}^{x + t - t'} {{y^2}} {e^{ - {{{y^2}} \over 2}}} - {e^{ - {{{y^2}} \over 2}}}dy = \underbrace {\int_{x - t + t'}^{x + t - t'} {{y^2}} {e^{ - {{{y^2}} \over 2}}}dy}_{(4)} - \int_{x - t + t'}^{x + t - t'} {{e^{ - {{{y^2}} \over 2}}}} dy$$
$$(4) = \int_{x - t + t'}^{x + t - t'} y {e^{ - {{{y^2}} \over 2}}}ydy = \left. { - {e^{ - {{{y^2}} \over 2}}}y} \right|_{y = x - t + t'}^{y = x + t - t'} + \int_{x - t + t'}^{x + t - t'} {{e^{ - {{{y^2}} \over 2}}}} dy$$
Therefore
$$\int_{x - t + t'}^{x + t - t'} {{y^2}} {e^{ - {{{y^2}} \over 2}}} - {e^{ - {{{y^2}} \over 2}}}dy = \left. { - {e^{ - {{{y^2}} \over 2}}}y} \right|_{y = x - t + t'}^{y = x + t - t'} + \int_{x - t + t'}^{x + t - t'} {{e^{ - {{{y^2}} \over 2}}}} dy - \int_{x - t + t'}^{x + t - t'} {{e^{ - {{{y^2}} \over 2}}}} dy = (x - t + t'){e^{ - {{{{(x - t + t')}^2}} \over 2}}} - (x + t - t'){e^{ - {{{{(x + t - t')}^2}} \over 2}}}$$
so $(3)$ becomes:
$${1 \over 2}\int_0^t {(x - t + t'){e^{ - {{{{(x - t + t')}^2}} \over 2}}} - (x + t - t'){e^{ - {{{{(x + t - t')}^2}} \over 2}}}} dt'\matrix{
{} & {} \cr
} (c = 1)$$
$$ = {1 \over 2}\int_{x - t}^x {z{e^{ - {{{z^2}} \over 2}}}} dz + {1 \over 2}\int_{x + t}^x {z{e^{ - {{{z^2}} \over 2}}}} dz$$
$$ = - {e^{ - {{{x^2}} \over 2}}} + {1 \over 2}{e^{ - {{{{(x - t)}^2}} \over 2}}} + {1 \over 2}{e^{ - {{{{(x + t)}^2}} \over 2}}}$$
Finally,
$$u = {1 \over 2}( - {e^{ - {{{{(x + t)}^2}} \over 2}}} - {e^{ - {{{{(x - t)}^2}} \over 2}}})- {e^{ - {{{x^2}} \over 2}}} + {1 \over 2}{e^{ - {{{{(x - t)}^2}} \over 2}}} + {1 \over 2}{e^{ - {{{{(x + t)}^2}} \over 2}}} $$
$$ \Rightarrow u(x,t) = - {e^{ - {{{x^2}} \over 2}}}$$
(b) Since u does not depend on t, so we basically get the same equation:
$$\mathop {\lim }\limits_{t \to \infty } = u(x,t) = - {e^{ - {{{x^2}} \over 2}}}$$