Author Topic: TUT0402 quiz2  (Read 4958 times)

Linqian Shen

  • Jr. Member
  • **
  • Posts: 7
  • Karma: 0
    • View Profile
TUT0402 quiz2
« on: October 04, 2019, 02:00:02 PM »
Determine whether the equation is exact, if it is exact find the solution
$$
(2xy^2+2y)+(2x^2y+2x)y^{\prime}=0
$$

$$
\begin{array} { l }
{M_y=4xy+2\quad N_x=4xy+2}\\
{M_y=N_x\rightarrow\text{exact}}\\
{G \varphi(x,y)\quad\text{such that}\quad \varphi(x)=M\quad\varphi(y)=N}
\end{array}
$$
$$\left. \begin{array} { l } { \varphi x = 2 x y ^ { 2 } + 2 y } \\ { \varphi = x ^ { 2 } y ^ { 2 } + 2 x y + h ( y ) } \\ { \varphi y = 2 x ^ { 2 } y + 2 x + h ^ { \prime } ( y ) = 2 x ^ { 2 } y + 2 x } \end{array} \right.$$

$$\left. \begin{array} { l } {h^{\prime}(y)=0}\\{h(y)=\text{constant}=c}\\ {x^{2} y ^ { 2 } + 2 x y = c } \end{array} \right.$$